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ABSTRACT

The particles in an accelerator interact with one another by
electromagnetic forces and are held together by external focusing
forces. Such a many—bbdy system has a large number of transverse modes
of oscillation (plasma oscillations) that can be excited at character-
istic frequencies by errors in the external guide field.

In Part I we examine one mode of oscillation in detail, namely
the quadrupole mode that is excited in uwniformly charged beams by
gradient errors. AWe'derive self-consistent equations of motion for the
beam envelope and solve these equations for the case in which the space-
charge force is much less than the external foéusing force, i.e., for
strong-focusing synchrotrons. We find that thg resonance intensity is
shifted from the value predicted by the usual transverse incoherent
space-charge limit; moreover, because the space-gharge force depends on
the shape and size of the beam, the beam growth in aiﬁays limited. For
gradient errors of the magnitude normally present in strong-focusing

synchrotrons, the increase in beam size is small provided the beam
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parameters are properly chosen; otherwise the growth may be large. Thué
gradient errors need not impose a_limit on the number of particles that
can be accelerated.

In Part II we examine the other modes of collective oscillation
that are excited by machine imperfections. TFor simplicity we consider
only one-dimensional beams that are confined by harmonic potentials, and
only small-amplitude oscillations. The linearized Vlasov and Poisson
equations are used to find the twofold infinity of nofmal modesrand
eigenfrquencies for the stafionary distribution that has uniform charge
density in real space. In practice, only the low-order modes (the
dipole, guadrupole, sextupole, and one or two additional modes) will be
serious, and the resonant conditions for these modes are locafed on a
tune diagram. These results, which are valid for all beam intensities,
are compared with the known eigenfrequencies for the stationary distri-
bution that has uniform particle density in phase space, and are

extrapolated to the Gaussian distribution observed in the Brookhaven AGS.
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INTRODUCTION

The beam of particles in an accelerator is a many4body system'of
charged particles interacting with one another by electromagnetic forces
and held together‘bylexternal focusing forces. Such a many-body system
has a large number of modes of collective oscillations that can bé
excited by machine imperfections at characteristic frequencies. In the
limit of low intensities, the interactions are negligible, and the
collective modes and.eigenfrequencies are easy to find. Consider, for
example, a one-dimensional beam in an external harmonic potential; in

the absence of space charge, the individual particles obey the équation

s (1)

1 ax
v af

phase space with the frequencdy v. A distribution with circular

and any distribution of particles rotates rigidly in the x -

symmetry (Fig. la) is stationary, while a distribution with circular

symmetry, but displaced from the origin (Fig. 1b), oscillates with the
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Fig. 1.
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frequency v - in real space, the beam coscillates rigidly back and forth
at the frequency v. In fact, there is an infinite numbei of modes with
the circular form of Fig. 1b, each with a different radial dependence,
but each oscillating at frequency v. Similarly, there is an infinite
number of modes with the elliptical symmetry of Fig. lc; in real space,
these modes expand and contract with frequency 2y. 1In genefal, there
is an infinite number of modes with a given n-fold symmetry of rotation,
and each mode oscillates with the frequency ny. Therefore, in the
absence of space charge, the eigenfrequencies for any distribution are
Just harmonics of the unperturbed betaﬁron frequency, and each eigen-
frequency is infinitely degenerate.

Resonance can occur when an eigenfrequency is an integral
multiple of the rotation frequency iﬁ the accelerator, i.e., when
ny = m; this condition is of course identical with that obtained from
the single-particle approach, which is equivalent to the many—bodj
approach in the limit of zero intensity. Thus if d driving tern of the
form %" cos k @ is added to Eq. (1), the various dipole modes (Fig. 1b)
will be excited 1f v =k and n = 0,2,4,--+; +the quadrupole modes
(Fig. lc) are excited if v = g and n =1,%,5,"*'; the sextupoie

6,"

modeg if y = k and n = 2,&,

3

**, and so on for the higher-order

modes.

Space-charge interactions modify these results. TFor inteﬁsities
of interest in synchrotrons, and for small-amplitude oscillations, the
eigenfrequencies are shifted by small amounts proportional to the beam

intensity, and the degeneracy is removed so that the eigenfrequencies
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occur in clusters near the unperturbed, degenerate values nvy. As a
result, each of the forbidden lines on a tune diagram that would occur
for an integer, half—intege?, or subharmonic value of v in the absence
of space charge is split into an infinite number of closely spaced
lines. TFor example, the various dipole modes that are excited for the
same frequency v =k in the absence of space charge are excited in the
presence of space charge at different frequencies that are clustered
below the value v = k: +there is one mode for which the beam oscillates
rigidly back and forth at the unperturbed frequency v, but there is |
also an infinite number of nonrigid modes whose eigenfrequencies are
shifted below v = k by amounts proportional to the beam intensity.'

The above remarks apply only to small-amplitude oscillations.
For larger-amplitude oscillations, space charge provides a very effective
mechanism for limiting beam growth through the nonlinear dependence of
the space-charge forces on the shape and size of the beam. A guantita-
tive study of this important effect is extremely difficult in the general
case; however, it was shown by Lloyd Smitﬁ'and by P. M. Lapostolle2
that the gquadrupole mode excited by gradient errors in uniformly charged
beams can be analyzed even in the nonlinear regions. |

In Part I of this paper we examine this case in detail. In
Section 1, self-consistent equations of motion for fhe beam boundary
are derived for uniformly charged beams'with one and two degrees of
freedom. The derivation, which is more general than we need; is
applicable whenéver the‘selffforces and external forces acting on the

individual particles within the beam are linear. In Section 2, the
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envelope equation fof the one-diménsional (planar) beam is solved, and
ln Section 3, various two-dimensional (cylindrical) beams.are examined.
For either cage, the nonlinear character of the space-charge force
causes the frequency of the.quadrupole mode of oscillation to depend on
its amplitude. Thus the beam growth caused by gradient errors is always
bounded. We also investigate the process of'resonance crossing that
results from slow variations in external focusing or effective space-
charge force and find, for gradient errors of the magnitude normally
encountered in AG synchrotrons, that resonances can be crossed in the
direction of increasing frequency with only a small increase in beam
size. However, if the resonance is crossed in the direction of‘decfeasing
frequency, a substantial increase in beam size can occur. TFor example,
if the beam is caused to bunch in the synchrotron, the space-charge force
increases, and the beam size can grow quite large cear the intensity
predicted by the bunched incoherent space-charge liﬁit. HoweVer, a
prebunched beam whose intensity is considerably larger than the incoherent
space-charge limit may be successfully accelerated. In this case, the
resonance is crossed in the direction of decreasing space-charge force,
and very little beam growth occurs. Thus, the incoherent space~-charge
limit,'as usually defined, need not impose a limit on the beam intensity.
Similar results have been derived by F. Sacherer,5 and by P. M. Lapostolle
and L.Thorndahl.iL

In Part IT we investigate the other modes of collective oscilla~
tion that are excited by machine imperfections. For simplicity we

restrict our attention to one-dimensional, planar beams, and consider



-5- UCRL-18454

only small-amplitude oscillations. In this case the twofold infinity

of normal modes (plasma oscillations) and eigenfrequencies can be found
by means of the lineérized Vlasov equation and Maxwell's equations.
Harker5ihas given a general prescription for reducing these equations

to an integral equation of the Fredholm type, but numerical methods are
usually required to extract the eigenfunctions and eigenvalues. HoWevér,
an important result of this paper is a direct method for finding all

the normal modes and eigenfrequencies for the stationary distribution
corresponding to a uniform charge distribution in real spaée.

In Section 1 of Part II, we find the eigenfunctions and eigen-
values for this case, and determine which modes are excited by a given
external driving fqrce. Then, since the complete eigenvalue spectrum
is‘known, the resonant frequencies for the various dipole, quadrupole, -
and higher-order modes can be located on a tune diagram. Besides being
useful in themselves, these results provide considerable insight into
the more difficult normal mode problem for nonuniform beams.

In Section 2, this mode strucfure is compared with that obtained
by’Ehrman6 for the stationary distribution that has a uniform parﬁicle
distribution in phase space. In this case the charge deﬁsity in real
space is épproximately uniform, and we find that the eigenvﬁlue spectra
for the two distributions are very similar. We also extend these

results to a distribution with Gaussian charge density similar to that

measured for the Brookhaven AGS.
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PART I. UNIFORMLY CHARGED BEAMS IN THE PRESENCE OF
GRADIENT ERRORS

1. Envelope Equations

- In this éection we find self—consistent envelope equations for
the case in which both external forces and self-forces acting on the
particles in a beam are linear. The requirement of linear forces
restricts us to uniformly charged beams and to linear machine imper-
fections, namely gradient errors, but allows us to study the effects
of space charge on large—amplitude,oscillations of the beam.

| We first consider the simple case of a beam with only one
degree of freedom, then extend the derivation to two degrees of free-
dom, and finally show that the derivation can not be extended to three

degrees of freedom.

The One-Dimensional Beam

In the absence of gpace-charge forces, we take the equation of
motion for the individual particles to be
2
é—g + K(s) x = 0, (1-1)
ds
where K(s) is the external focusing function, s measures distance
along the equilibrium orbit, and all the particles are assumed to have

the same velocity %% = vb;

The self-forces acting on a particle arise from the internal
charges and currents within the beam,7 as well as from the charges

. . . 8
and currents induced in the vacuum chamber walls, and also from
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collisions. between particles. Fortunately, the effect of collisions

is negligible for the times of interest, and for the low particle densi-

ties typical in,accelerators.9
We incorporate the image force into the external focusing term

K(s)»x, and neglect its nonlinear components and its weak dependence on

the beam size. Then the net effect of the image force is to shift the

tune by an amoﬁnt that depends on intensity and energy but not on the

beam size,8 in contrast to the direct self-force.

We also neglect the magnetic field component that results from

the transverse particle velocitiés because %% is only a hundredth to

a thousandth of the longitudinal velocity %% . The force from the

2

v
remaining magnetic field component is just —g— .times the electric

force, and ﬁeéd not be calculated explicitly. The complete self-force
is Al/yg times the electric force. |

The electric field calculation is simplified by neglecting the
curvatﬁre of the equilibrium~orbit‘and by neglecting the variation §f
the beam cross section with s. Aétually the beam is modulated around
the orbit circumference, but the modulation. length is‘approximately half
‘the betatron wavelength and is therefore negligible in comparison with
the transverse dimensions of the beam.

The beam geometry then has the rectilinear form‘sden in Pig. 2,
and in order that the self-forces be linear, the charge density must be

uniform between the boundary planes, x = #X(s). We assume'forithe
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T e,
e

moment that the particles can be arranged in the x - %% phase space
to produce the required uniform charge density, and that the charge
density remains uniform as the system evolves under the action of the

assumed linear forces. Then the equation of motion for the individual

particles is

—5 + K(s)x - 5. x = 0
ds y 2X(s)

ell
where EﬁI%T is the charge density and eNl is the total charge per

unit surface area. It is convenient to write (1-2) in the form of the

two first-order equations
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ox _
ds - p 2
' 2 N
gﬁ = ["K(,S) + ;ﬂe 5 " 1 ]X 3 (1-3)
s y v, 2X(s) ‘

and to define X =(;§) so that Egs. (143) can be written in the

compact matrix form

.§%§§l = F(s) x(s) . . (l;4>

We also introduce the transfer matrix T(s, so)
X(s) = (s, 5p) X(s) (1-5)

and note that the elements of T(s, SO) satisfy

ar(s, s.) : :
——2 - F(s) s, sg) - (1-6)

Since we know the equations of motion for the individual particles,
we can determine the evolution of any distribution of particles in phase

space. In particular, if the distribution at any position s. has the

0
elliptical boundary %M-l(so)x = 1, where M(so) is an arbitrary
symmetric matrix, then the boundary remains elliptical at other values

of s and has the form

Mls)x = 1, o | (1-7)
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where M(s) = T(s, so) M(so) f(s,vso). We can use (1-6) to write the
equation of motion for M(s) in the differential form

dM(s)

22 - E(s) M(s) + M(s) B(s) 8)

which depends only on the known quantities F(s).

The relationship between the components of M and the boundary

ellipse is shown in Fig. 3, where the area of the ellipse is ¢ VDet Mo,

which we designate by xE. We are primarily interested in the beam half-

D
Vo |
- \
/ ]
' /
/

N
]

Ml

Fig. 3.

width X(s) = Y Mil(s) > and it is convenient to parameterize M(s)

in the form

o o) s | ’V(l'9)
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%)
where -\ /P2 + %— is the maximum extent of the distribution in the
X

p-direction.‘ Then the equations of motion for the guantities X(s),

P(s), and E(s) follow immediately from (1-8):

dx ,
E = FllX + F]_QP s
ap ol
T = FX + F P o+ Fl?;{f s (1-10)
dE 1
i E(Fll ¥ 'F22>E
For a Hamiltonian system, Fll + F22 = 0, and thus E 1is constant,

which is just Liouville's theorem. When the form of F(s) corresponding

to Eq. (1-3) is used, Egs. (1-10) reduce to

a°x £ E’TeaNl
—5 + K(s)X - - o , (1-11)
ds X y mVp

for the beam half-width X(s).

We now demonstrate the Eq. (1-11) is self-consistent, i.e., that
the individual particles can be distributed in phase space to produce
the assumed uniform charge density within =x = #X(s). We require that

the particle density in x-p space at s = s have the form

0
(%, p, so) = f[m-l(so)X], where f(x, p, s)dxdp is the number of

particles at s within the ranges (x, x + dx) and (p, p + dp). Then



-12- UCRL-18454

, -
at arbitrary s the distribution has the form f(x, p, s) = f£[XM (s)X],

and the functional form of f is determined by the requirement

- :

- S f e[ (s)xlap (1-12)

We solve this equation by introducing the newtvariablés

v A
1
v = <; :) = D(s)X, where the matrix D(s) satisfies
v .
2

B(s) D(s) = Mi(s) (1-13)

Then the quadratic form %M-l(s)X is transformed into v12'+ v22, and

the elliptical distribution becomes circular, as shown in Fig. L.

P Az Vo
////D ﬁ “‘\}} - {_ﬂ- m\[\\ ,,
S NUZ SN B 7

(a) : (b)

Fig. L.

Actually, the four components of D(s) are not uniquely specified by
(1-13) because M(s) depends on only three parameters; the ellipse is

mapped into a cirecle but the orientation of the circle is‘noﬂ épecified.
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We fix the form of D(s) by requiring that the vertical lines

X = constant be mapped into vertical lines in v (Fig. Lec). Then
D), =0, and D(s) is determined by (1-13) to be

1

X 0

D = | (1-14)

2 .S
E E
This is a convenient choice for D(s) because it maps the integration
over p in Eq. (1-12) into an integration over Vo with vdvg = Xé—sl dp
The requirement of uniform charge density is then simply

Bl

= f f(vl2 + v22)dv2 s (1-15)

where the range of integration is restricted to vl2 + v22 < 1. DNote

that (1-15) is independent of s. In terms of the radius

T = vl2 + V22 5 Bg. (1-15) becomes

N 1 2
_2% = j ffr )rdr
U
v Vrg- v 2

(1-16)
1 1 |

This integral equation can be inverted by Abel's theoremlO to give

o =1 Ny N

(i) = 1

-/ i 2 " 2t ’
2B V1 - XX en%z - (X' - X'x)° - (%}5)

(1-17)
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which is the unique solution of (1-12). This demonstrates that the
particle distribution required to produce a uniform charge density does
indeed exist. It occupies the interior of the boundary ellipse
?M'lx =1, and the particle density approaches infinity at the bpundary.
Equation (1-11) is then the envelope equation for this distribution.
Actually, this method for finding self-consistent envelope
equations is not restricted to uniformly charged beéms, but is applic-
able whenever the external forces and self-forces are linear. TFor
example, it was used by H. G. Hereward and A. S¢renssen"to stﬁdy iongi-
tudinal beam effectsll where, due to the shielding of . the vacuum
chamber, a parabolic charge density is required to produée linear self-
forces. For any case, the envelope equations are just equations (1-10)
where F(s) is specified by the equations of motion (1-4) for the indi-
vidual particles. The distribution f(%M‘lx) that produces the

required charge density p(x),

o0}

o) = [ ewtww (1-18)

3
-00

can be found by the same procédure thét was used for the case of
X
uniform charge density. The condition Jr o(x)dx = N, requires that
-X
v Nl %
p(x) have the form = g(-}z), and Eq. (1-18) can be transformed by

D(s) into the circular form

IZ
=i

Bl
[

s(e) = [ 200® e vha, )
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dg(vy) . 10
—~————— is continuous.
dvl

which can be inverted by Abel's theorem provided

Thus, the self-consistency of the envelope equations is guaranteed
provided p(x) has a continuous first derivative.

The Two-Dimensional Beam

In principle this method can also be extended to beams with two
and three degrees of freedom. The matrix equations remain formally
valid when the vector X(s) is increased to four or six component, but
now the constants of the motion ?M-l(s)X describe hyperellipsoids in-
the four- or six-dimensional phase spaces. The required distribufion
function f(%M-lX) that produces linear self-forces can be found by
transforming the defining equation for ¥ into the circular form
analogous to (1-19), but now for four or six dimensions.

Consider first the case of a beam with two degrees of freedom.

ds
T

and for the purpose of calculating the electric field, that the beam is

We again assume that all the particles have the same velocity v_ =

in the form of a cylinder with an infinite extent in the s direction.

" Then the condition of linear self-forces requires that the beam have an
elliptical cross section and a uniform charge density. However, thé

axes of the elliptical cross section need not'be.aligned with the

- coordinate axes, and the external focusing force may include linear
coupling between the two transverse directions. The evolution of the
distribution is then determined by a four-by-four matrix F(s) (EBg. 1-k4),
and the constants of the motion %M_lx describe hyperellipsoids in the

X, %%, Z, %g phase space.
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We can immediately write the defining equation for f in the

Torm
. 2, .2 2 2 '
constant = Jff(vl v+ vsT v, )dVdeh ,  (1-20)

where the integration is restricted to vl2 + v22 + v52 + vﬁg

where the'éonstant can be determinéd by the normalization of Af.lz This

<1, and

shorteut avoids the specification of D(s). With a change of variables,

Eqg.

N

(1-20) becomes

N 1 ]
SN [ ORI (1-21)
i |

n \Det M

wheré _N2 is the number pf particles per unit length in the beam. The

required-distribution function is the solution of (1-21):

R B '} ’ _
PUTX) = ——F—— 81 - Ny (1-22)

where 8(x) is the usual delta function. The_pafticles are distributed
with uniformvdensity;on the surface of the four—aimensional hyper-
ellipéoid %M'lx =1, whoée.spape and qfientatign ié specified by'thel
~ ten independent @arameters“of the four-by-four matrix M(s).

The self—fofceskaré.detcrminea by the projection of this distri-
bution onto the_physical X~z plahe. This projection is uniform and

has the boundary
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2 2

w® oo o2t o -w.® o, (1-23)

=
which describes an ellipse of area ﬁ\[&llMEB _ M132 . In terms of

the major and minor axes and angle of rotation as shown in Fig. 5,

X
s
Fig. 5.
these matrix elements are
Mil = a2 cosee +.b2 sinee 2
N%B - singe £ b° 00829 , v (1-24)

Mi5 = (b2 - ag)sine cose

and the self-forces are easily determined.

The evolution of the distribution is then determined by



J18- | UCRL-18L5k

M) | pe) m(s) + M(s) F(s) - (1-25)

ds

where F(s) contains the known external forces as well as the sélf-forces,
which d@pend on the matrix elements Mil’ Mi}’ apd M?B' In general all
ten equations of (1-25) are necessary to describe the evolution of the
system. However, if the equations of motion for the individual particles
do not invoive coupling between the two transverse planes, and if the
hyperellipsoid is oriented so that the off-diagonal submatrix with
elements Mi}’ Mih’ M23’ M?h is zero, then the hyperellipédid will
maintain this orientation and these matrix elements will femain Zero.

The remaining six equations (three for the x direction and three for the

z direction) can be parameterized in the form analogous to (1-9) for the

one-dimensional beam. The self-fields for this case are

P lLeNE e LFENE ‘ ,
% = Xfi_:_ZT X and g = ZTE_I—ZT z, and the.envelope equatlonsv
become
2 2
ax _ E. he N, 1 _
—2- + KX(S)X - '?' - 5 ) 'X T 7 = 0 B}
ds X v mv
(1-26)
2 B2 ke
u + K (S)Z - Ei i_ © N2 . ‘ l = O
; - 5
-dSE Z 25 75mv 2 X +7Z

where X(s) and Z(s) are the beam half-widths, and E_ end E  are

the beam emittances in the x -A%f and . z - %% phase spaces. These
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self-consistent envelope equations, which describe a cylindrical beam
oriented with © = 0 in Fig. 5, were first obtained by I. M. Kapchinsky
and V. V. Vladimirsky.™

The Three-Dimensional Beam

Finally consider the case of a beam with three degrees of
freedom. The condition of linear self-forces requires that the beam
have an ellipsoidal shape in real space and a uniform charge density.
Then Eq. (1-8) will specify the beam envelope provided a distribution
of'the’form f(YM-lX) exists that produces the required uniform charge
density. In this case the defining equation for f has the form

constant = -jrf(vle + v22 + v32 + vhg + V52 + v62)dvudv5dv6

(1-27)

This equation upfortunately has no solution that can be interpreted as
a distribution function. The forms of the one- and two-dimensional
distributions indeed suggest that the progression from

f e (1 - %M-lX)-% in one dimension to f cc 8(L - %M-lX) in tﬁo
dimensions will have no extension to three or more dimensions. The
actual proof; due to Maurice Neuman (privafe communication), is

reproduced in Appendix A.
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2. The One-Dimenéional Beam

We are now in a position to investigate the motion of the uni-
form one-dimensional beam in a self-consistent manner. We rewrite the

envelope equation (1-11),

a°x ol 2“ele
—5 + K(S)X - —5' - 3—5 = 0 y : (2-1)
"~ ds ‘ X y ‘

where X(s) is the beam half-width, xE 1is the beam emittance, Nl-

is the number of particles per unit surface area of the 3eam; and v

is the particle velocity. The external focusing term 'K(é) includes
both the ideal focusing forces and gradient errors. The noniinear
emittance term arises from the conservation of the beam emittance, and
has the same form as the centrifugal force term that results from the
.conservation of angular momentum in céntial force problems. “It prevents
a beam with finite emittance from becoming arbitrgrily small, but in the
absence of space charge, it does not limit the‘iarge-amplitude grox»rtl'i.llL
However, in the presence of space charge, the combination of the laSt_
two terms in (2-1) will limit the resonant growth of the Eeam.

We first eliminate the rapidly varying part of K(s) from the
envelope equation by transforming to "smooth" variables. In the absence
of space charge, the periodic solution of (2-1), Xb(s) = X?(s + c),
where C 1s the orbit circumference, can be found by standard methods
once K(s) is known. It is conventionally»written in the form

() = VEa(s) N

D
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where B(s) is the familiar amplitude function of Courant and Snyder.l5

Then if we transform to the dimensionless variables

x=§7(s—l-)-, ¢=-3—§, (2-3)
p'*

the unperturbed envelope equation (in the absence of space charge and

gradient errors) becomes

- , ~ -y
ag® x | (é :

where v 1is the number of betatron oscillations per revolution and ¢
increases by 23 each revolution. The general solution of this eguation

is

x> = 1+ A° 4 A sin(2v@ + @) - (2-5) -

where A and «@ are arbitrary constants. The matched solution is
A =0 and x =1, and any other solution oscillates about this matched
solution with the frequency 2y. Thus the dimensionless variable x

measures the beam envelope in units of the unperturbed matched envelope.

In terms of the variables x and ¢ the complete envelope '

equation becomes

- 2vw o= 0, (2-6)
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where we have assumed an nth-harmonic gradient error with stopband width

Av, and where the last term is actually a function of s (or @),

2
-VQBB/E(S)A, 2re Wy

. (2-7)
3 2 »
\/E y mv?

EVAVSC =

In what follows, we replace A(s) by its average value % and neglect
the high-frequency small-amplitude ripple components in the already

small space-charge term. Then Awsc is independent of ¢ and has the

form

| 22N
Ay o L obreRT 1

e A= } (2-8)
sc 2y 75mVP2 2a

where a §_Vﬁ?§ﬂ is the average amplitude of the unperturbed envelope.
The quantity Avsc is the space-charge-induced fregquency shift for a
beam whose envelope is constrained to the conétant value a; it is a
convenient measure of the beam intensity and is in fact identipal with
the eﬁpression conventionally used for predicting a;space—charge limit.

Béfore solving the nonlinear'eﬁvelope equation, it is informa-
five to examine its small-amplitude solutions.v In the absence of

Ay

gradient errors, Eq. (2-6) has the constant solution x =1 + ~Eic s

and for oscillations of small amplitude & about this constant value,

the equation becomes '

— (Lrv2 - 6vAwSC)6 = -2vAv_ cos ng .. (2-9)
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Thus the envelope oscillates with the natural frequency 2(v - % Avsc),
and resonance occurs for 2(y - E-Avsc) =n. If vy is larger than a

half-integer by the amount Av, i.e., v = % + Av, then resonance occurs

at a beam intensity corresponding to the value
Av = ! Av (2-10)
sc 3 ? S

which is one third larger than the value usually assumed. The failacy
in tB& usual procedure for predicting space-charge limits lies in the
as tion of a constant beam size: if the envelope modulation iskb
neglected, resonance occurs when the individual particle frequency
v - Aﬁsc falls within the stopband at ,%; in other words, for the
intensity A&v, = Av. However, the moduiation of the envelope-causes
the self-fields to exactly cancel the effect of the gradient error at
this intensity,l6 and the resonance is shifted to Avg, = %-Av. This
shift in resonant intensity is not restricted to uniform beams; it
occurs for any mode of collective oscillation and is discussed in detail
in Part II.

The amplitude of the periodic solutions of the linearized

equation (2-9) are shown in the form of & response diagram for fixed

Av Ay ‘
535 in Fig. 6. The Z;E = 0 asymptote represents the free envelope

oscillations, which are periodic for the intensity A”sc = E Av. The

3

remainder of this section is concerned with the distortion of these

curves in the large-amplitude region by the nonlinear terms in (2-6).
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Fig. 6. Response diagram for the linearized envelope equation:

X = 1+ s Where the quantity
I3Amsc Av |

2v

in
max

Ay
the constant solution x =1 +

has been neglected.
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General Solution of the Envelope Eguation

Both the space-charge term and the gradient-error term are

Av
small for altermating-gradient synchrotrons--they are of order VSC

Ay
and - compared with the remaining terms. Consequently we treat

these terms as perturbations and use in place of x and %% the

variables A and o defined by -

% = 1+4A% + & sin(2vg + )

’

(2-11)
vA cos (2v@ + @)

* %

In the absence of perturbations, both A and o are constant, while
for smali perturbations they change slowly in time, with small high-
frequency variétions Superimposed. It Eqs.‘(é-ll) are inserted in the
envelope equation (2-6), the folldwing first-order equations for A

and O result:

%% = -t V1 + A% cos [(2v -nm)p +a] , (2-12)

| | Ny |
o AN Avge A+V1+2%sinu
Agg=tv V1 +aA sin[(2v - n)f + a] - —= —_— = PR gy
: 0 v Vi 4+ A2 + A sin u

(2-13)

2

plus additional terms that vary with the frequehcies 2v, by, ete.,
which are neglected.
Equations (2-12) and (2-13) may be combined and integrated to

obtain the constant of the motion,
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‘ Av W/ _
constant = A sin Q + 2y vl + A2 -8 =8 ——Eé E(k) , (2-1k)

Avs | Av

where Q = (2v - n)f + @ and E(k) is the complete elliptic integral of

ﬁhe second kindl7 with modulus k2 = A . This equation

A+ ¥Y1 +4A

speéifies the phase trajectories in the A, Q space, or alternativély
by means of (2-;1), in the x -’%% phase space at any point along the
orbit, i.e., for any azimuth ¢. In particular,.Figs.‘(7é) and (7b) |
show typical trajectories for azimuth $ =0 and for two Vaiﬁéé of the
beam intensity, while Fig. (7c) shows the same trajectories as Fig. (7b),
but for azimuth ¢ = %. As expected, the phase trajectories are always
bounded and the beam size remains finite.

Of special interest are the fixed points, ﬁhich have constant
values of A and Q. They are determined by Egs. (2-12) and (2-13) to

have @ = i% and

| o . .
Av . Ay \/ 2 .
A = T % —5 V1 4 AE + 8¢ 1 A+ VI +A" ginu u

Av Av 25 f - /
: -0 : Vl + A2,+ A sin u
' (2-15)

Ay ‘ Ay

which determines A as 7 function of Z—g and 5¢
v

Ay
corresponding to these fixed points is described by

The beam motion

[re— )
= = Vi Y cos ng (2-16)
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which represenﬁs a beam oscillating with the peribdicity of the gradient
error. The amplitudes for these periodic oscillations or fixed points
are shown in Fig. 8 for several values of the stopband width 'Avs. The
response curves afe distorted from the linearized diagram Fig. 6 beéause
the nonlinearity causes the fregquency of the envelope oscillations to

Av

depend on amplitude; the Z;E -0 curve shows directly the amplitude

dependence of the periodic free envelope oscillations. As a result, the
resonant amplitudes are always finite. Another éonsequence of this

distortion is the existence of three fixed points for AZiC ‘
the critical value (which depends on 2;§) rather than the usual single

greater than’

fixed point. The two labeled S+ and §  are stable Whereas U+ is
unstable; it caﬁ bé seen from Fig. 7 that configuration points near S+
and S  oscillate with small amplitude about these points whereas
points near U+ may follOW‘the separatrix and make much larger excur-

’ Av
sions. As the gquantity

decreases, the phase trajectories of
Fig. 7b are transformed smoothly into those of Fig. 7a; the stable
region around S+ shrinks down to a poiht and then disappears for

Amsc
Av

less than its critical value.

In the absence of both space charge and gradieﬁt errors; the‘
metched beam corresponds to the solution 'x = 1. In the presence of
space chafge and gradient érrors, the matched condition corresponds to
the lowest fixed point of Fig. 8. This solution is periodic, so that
the beam envelﬁpé remains staﬁionary with respect to fhe acéelératbr,

but it is modulated n = times around the orbit circumference, where n-
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7<rnax

Avg,

Av

XBLE8S -39

~— % 1
Fig. 8. Response diagram: X ooy = ( 1+ 4° +A>2.. The

Ay
curves to the left of Z;E = 0 correspond to the upper

'sign in Egs. (2-15) and (2-16); those to the right
correspond to the lower sign. The points where the
slope is vertical (indicated by the dashed curve) are

referred to as critical points.
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is the periodicity of the gradient error. Any mismatch will lead to slow
oscillations in the envelope abeut this matched value just as in the more
familiar'ioweihtensity case. The frequency of these oscillations depends
on which phase trajectory of Fig. 7 the beam is on, but near stable
fixed p01nts it is approximately EAW times per revolution. Note from
Fig. 8 that the matched condition for large intensities clOse;y
approaches the low-intensity matched value x = 1, provided ﬁhe‘gradient
errors are small and the intensity is not too near the resonant vélue‘

L

AVSC = 3AV'A

Resonance Crossing

The foregoing considerations apply only to a coesting‘beam
whose parameters remain fixed. 'HOWever, the parameters'de3cribiﬁg an
accelerated beam change with time, and the beam may cross the
Avsé =3 Ay resenancep We consider the‘woist~case of a slow, adiabatic
crossing.

The envelope equations can be derlved from a Hamlltonlan with
the canonlcal variables x and —a s and therefore Liouville's theorem
applies to the =x = a@ phase space. Conflguratlon points lying on
closed contours continue to lie on closed contoﬁfs~as the parameters
are varied adiabatically, and the area enélbsed by these contours femains
constant. However, tﬁe adiabatic assumption bresks down near the
stagnation point U+, so that the area eeclosed by'the,sepatrix changes.
For example, the stable phase area around S becomes smaller as:

Ay

decreases.
Av
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Consider first the case of a resonance crossing in the direction

Amsc

of decreasing A beam whose intensity is larger than the resonant
value and whose envelope was adjusted before injection to the matched
value x =~ 1 oscillates with small amplitude about s¥ in Fig. 8, and

corresponds to a point on one of the trajectories around S+ in Figs. 7b
Av '

and 7c. As the beam is accelerated, decreases and the stable
area around S+ shrinks until the configuration point is forced onto
the sepatrix. At this point the beam suddenly oscillates with a larger
amplitude as its configuration point moves around the separatrix. The

maximim beam size can be read directly from Fig. 9, which shows the

maximum and minimum beam size for a point on the separatrix at the

. Ay
critical wvalue of A§c° If the vacuum chamber is large enough to

accommodate this increase in beam size, then the resonance has been

Av

safely passed and the oscillations become smaller as continues

to decrease.

On the other hand, it is possible for a beam to cross the
resonance in the opposite direction. For example, if thekbeam isi
bunched after injection, vANsc increazés. Also Av =v - % may

;i tq increase. In this case

a nearly matched beam that oscillates around S~ continues to lie on
Av

change during acceleration and cause

a contour enclosing S as increases, and therefore the beam

AN Av
X . . s s
size increases indefinitely as >y

increasés (Fig. 8).
Summary
This completes our analysis of the uniform one-dimensional beam.

In the presence of gradient errors, the beam envelope oscillates, and
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point.
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resonance occurs for the beam intensity corresponding to Awsc = % Avs
this is one third lérger than the usval space-charge limit, which

assumes that the beam size is constant. Furthermore, because of the
nonlinear dependence of the space-charge force on the beam size, the
envelope is always bounded. The amount of beam growth caused by crossing

Av
the resonance in the direction of decreasing

has been calculated
for nearly matched beams (Fig. 9), and is less than fifty percent for
stopband widths Avs's 0.01 Av. This resonant growth is minimized for
small gradient errors and for large values of Av = v - %{ On the
other hand, adiabatic resonance crossing in the direction of increasing

Ay

a

A:c would produce very large resonant growths, and should be avoided.
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3. Two-Dimensional Beams

The envelope equations for the two-dimensional cylindrical beam

can be written in terms of the dimensionless variables x and =z as

2 vz bm2
dx- 2 X P _ -
=t [Vx * EVXAVSX cos ng] - 3 ax + bz ° (3-1)
ag X
2 2
9-2-5'+ [ 240 A cos n@] - 2 2 = 0 (3-2)
d¢2 Vs Ve-sz ' ZB ax + bz ? .

where again the ripple components have been neglected. The quantities

Vy and v, are the betatron frequencies in the sbsence of space

charge and gradient errors. As in the last section, x and =z are

_ EXB EZR
the beam semi-axes measured in units of a = ;——- and b = Iy
, X z

respectively, where a and b are the semi-axes of the matched beanm
in the absence of gradient errors and space charge. The quantity

r R

n2-Z O 1 > where N is the number of particles in the bean,
P 1B ab 2 o ,
By
e2 :
Ty = —% the classical electrostatic particle radius, and B is the
me '

bunching factor (the fraction of the circumference occupied by particles).

The space charge induced frequency shifts for a beam with the constant

2
W
b D

envelope x =1, z =1 are Avscx = = b.Eﬁ_ and
2
a wp
Avscz =T -532 . An Eﬁh-hgrmonlc gradient error has been inecluded .

with stopband w1dths Avsx and Avsz'
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The overall envelope motion described by (3-1) and (3-2) is
very simple: the énvelope has two modes of oscillation, corresponding
to its two degrees df freedom, and the resonant growth of each mode is
limited by the nonlinear space charge tefms Just as for the one-
diﬁensional beam. However, the mathematical details are more complicated
now: whereas the motion of the one-dimensional beam depends on only

Av Av

and ZEE and can be represented by a config-

uration point moving on a trajectory in a two-dimensional phase space,

the two parameters

the motion of the two-dimensional beam dépends on six parameters and
requires a four-dimensional phase space. |
Physically, the envelope motion can be characterized by the
degree of coupling between the x and =z directions, which arises
from the space-charge terms in (3-1) and (3-2). Very loose coupling
occurs when the individual particle freguency Ve T Avscx is very
different from v, ~ Avscz. Then the envelope motion is nearly one-
dimensional and the solutions are similar to those»found in the last

section. On the other hand, very tight coupling occurs when

- Avscx is approximately equal to v, = A

; in this case the
z Vsez?® s

Vx
x and z amplitudes of envelope oscillations are approximately equal
and the envelope motion is tondimensional. In the following we
concentrate on a few special cases. In A the solution for the tightly
coupled case Ve =V, ~and EX = EZ is presented in detail; in B

several cases leading to the one-dimensional limit are briefly examined.
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A. Equal Frequencies and Emittanees

In this case the‘envelope eQuations without gradient errors are

d2x 2 v2 uva”sc S oy
S tVE 5 ot gay =0 (5-3)
ag X . ,
%z 2 v2 uVAVsc : .
- e -G
ag z , :
2
“p
where Ve= V, =V and AVSCX = Avscz = Avsc, with Avs =5, if

C.

we consider oscillations of small amplitude SX, 62 about the constant
: Ay
sc

solution x =2 = 1+ 5 we find a symmetric mode with circular

cross section (BX = 6Z) that oscillates with the frequency
2(v - §Aﬂvsc), and an antisymmetric mode with elliptical cross section

(6, = -8 ) that oscillatee with the frequency 2(v - %-AVSC).
Therefore, in the presence of gradieht errors of frequency n, reson-
ances occur for the beam intensities correspendingAto Avsc = 2Av and
to Avsc = %AAV where egain Av = v - %u Note that these resonant
intensities differ from the usual space-charge limit Avsé = Av  that
is calculated for a static beem. Any collective mode of oscillation
produces similar frequeney shifts, as will be seen in Part IT.

We nOW'examine’these<tw0 modes in the nonlinear regime. The

symmetric mode is driven by the symmetric gradient erfor ‘Avs‘

= A
X Vs

Z)

and the antisymmetric mode is driven by the ahtisymmetric gradient error

Mgy = - Av . When either gradient error is included in (3-3) and
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(3-4), the equations can be solved by the same method that was used for
the one-dimensional envelope equation. The results are presented here,
while the calculations are outlined in Appendix B.

For the symmétric gradient error, we find symmetric solutioné

of the form

x* = 2 = 1+4° 4+ A cos(ng +Q) , (3-5)

where the slowly varying quantities A and Q satisfy the equation

. ﬁ AN
constant = A cos Q + 28V U1 +A° -2 —2C (1 + V1 + ° )
AWS AVS »

(13)
which specifies a trajectory in the two-dimensional A,Q space. The
corresponding trajectories in x - %% space or z = %% space have the
same form as those found for the one-dimensional beam (Fig. 7), but now
the fixed points occur for @ = O,x. and for values of A +that satisfy

_ Av Av \/ 2 _
A - T % s s A2 + sc l»+ A 1

aNY, Av A

(B16)

These fixed points describe a circular beam‘that osclllates with the
peiibdicity of the gradient error. They are shown in the form of a
response diagram ih Fig. 10, which is again distorted from the lihearized
diagram sé that only bounded solutions areipossible. Note from (3-5)
that the symmetric character of the normal mode solution (6X = BZ)

remains symmetric even in the nonlinear regime, the only effect of the

nonlinearity being to limit its resonant amplitude.
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Fig. 10. The response curves for a symmetric gradient error, with

resonance near Avg, = 2Av, are superimposed on those for an

antisymmetric gradient error, with resonance near

1
: -~/ 2
Av = E Av. For either case, x = B T <’ 1+ A2 +'A\> .

sc 3 max
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For the case of an antisymmetric gradient error, there are

antisymmetric solutions of the form

X2 = Vi + A2 + A cos(nd + Q) ,
(3-6)
2 2
z = 1+A - Acos(nf +q) ,
which describe an elliptical beam. Now A and Q satisfy
' Ay
constant = A cos Q + 2 S¥— 1+4% -0 Sc[gnA_ng_(ﬁdk],
Avs Avs e k
(B13)

where K(k) is the complete elliptical integral of the first kind.l7
The resulting trajectories in x - %% or z - %% space again have the
same form as those for the one-dimensional envelope, but now the fixed

points occur for @ = O,x and for values of A  that satisfy

Ay Av 2
1l 7's 2 sc 1 2 k
A = FF— 1+A +E—k[l—ﬁ:1{(k)] , (B16)
where k = A They ‘describe a beam that oscillates antisym-
2 .
1 +A

metrically with the periodicity of the gradient error, i.e., x is
largest when 2z is smallest and vice versa, and‘aré'also shown in
Fig. 10. TFor either mode of envelope oscillation, the Ays = 0 curves
represent the free envelope oscillations that aré periodic.

Note from (3-6) that the antisymmetric character of the normal-

mode solution (BX = ABZ) is approximately maintained in the nonlinear
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regime. Indeed, this is a general result: the character of the normal-

mode solutions determined by the linearized envelope equations (the
SX . ,

ratio 5_) 1s approximately maintained in the nonlinear regime, the
z v

main effect of the nonlihearity being to limit the resonant amplitudes
of each mode.

The nonlinearity also produces an additional effect that is not
predicted by linear theory, namely, it producés a weak coubling between
a gradient error of one symmetry and a mode of envelope osciliation bf
opposiﬁe symmetry. Thus the response curves for the symmetfic mode of
oscillation in Fig. 10 are modified by the presence of an antisymmetric
gradient error, and vice versa. Although this effect is small, it has
been a soufce of confusion, so we‘briefly describe it here; We write

the fixed points in the form

s
% = \[l + A2 + A cos(nf +q) ,
2 A (518)
z° = \/1 + A - A cos(ng -q) |,
where for the symmetric fixed points, Q = O,x, while for the anti-
symuetric fixed points, Q = %, %ﬂ . Figure 1lla shows the fixed-point
Av ,
solutions in the absence of gradient errors, in other words the Z—E =0
. v v

curves of Fig. 10. They specify the amplitude dependence of the free
envelope oscillations that are periodic. If now an antisymmetric

gradient error is present, the antiéymmetric fixed points still ocecur

_ Ay
in the @ = O,x Pplanes, but contrary to linear theory, the Z_E =0
Vo

curves for the symmetric fixed points are modified, as indicated in
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L S S/

Fig. 11. The fixed points in the absence of gradient errors
is shown in (a); the transition from a purely antisymmetric
gradient error to a purely symmetric gradient error is

shown in (b), (e), (d), (e), and (f).
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Fig. 11b. The analogous situation occurs for the symmetric gradientl
error (Fig. 11f). This coupling betwéen fixed points of-one symmetry
and gradient errors of opposite symmetry insures that the transition
from a purely symmetric gradient error to a purely antisymmetric
gradient error océurs in a continuous fashion, as indicated in Figs. 11
(c), (d), and (e). However, only the small-amplitude fixed points are
affected, and in the following Wevneglect this weak nonlinear effect and

assume that a mode of a given symmetry is affected'only by driving terms
of the same symmetry.

Resonance Crossing

If only one type of gradient error is present, the resonance
crossing is similar to that for the one-dimensional beam. A nearlj
matched beam with x =~ 1, z =1 and whose intensity is larger than
thé resonant value oscillates with small amplitude about a stable

Ay
fixed point. If

decreases, the stable phase area around the
fixed point shrinks and eventually the configuration point is forced
onto the separatrix. The beam then oscillates with a larger amplitude

that can be read directly from Fig. 12, which shows the maximum beam

A
Vse

v .
Note from Fig. 12 that the resonant growth for either mode of the

size for a point on the separatrix at the critical value of

two-dimensional beam is less than the resonant growth of the one-dimen-
Ay ‘

sional beam for the same value of Z;E - This was to be expected, since

the nonlineafity of the space-charge force is greater for the two-

dimensional beam than for the one-dimensional beam.



Ly- ,  UCRL-18454

If both types of gradient error are present, as is true in
practice, both resonances may be crossed. One might estimate the total
growth by adding the two separate growths from Fig. 12f However, an
initially matched beam that crosses the first resonance (Avsc = 2Av)
will no lbnger be matched when it crosses the second resonance. If
this mismatch is large, the total growth may be considerably larger
‘than the sum of the two growths. On the other hand, we have so far
neglected the adiabatic damping of the beam size due to the increase in-
WJE;ﬁ, which may be large, depending on the acceleration program
employed. .

B. General Beam Configurations

In the remainder of this section, the envelope motion for other

v o
values of % and ;E is briefly examined. Fortunately, the effect of
zZ

the nonlineafity can be largely separated from the linear effécts,
i.e., the normal mode solutions determined by the linearized envelope
equations remain approximately valid in the nonlinear regime, the main
effect of the nonlinearity being to cause the fréquency of each normal
mode to depend on its amplitude. Accordingly, we first examine the
normal-mode solutions of the linearized en&elope equations for several
cases, before including the effect of nonlinearity.

We write the linearized envelope equations, omitting gradient

errors, in the form

> t M =0 , (31



-43- UCRL-18k45L4

3'0 1 1 L) ] T T 1 T ] ] T

2.6r —— One dimension ' -

- ——— Symmetric -

—. — Antisymmetric

Xmax

1.8

Ay
Ay

XBL689-3906

Fig. 12. The maximum beam size for a point on the separatrix at

Av
the critical value of

is shown for either mode of

envelope oscillation for the cylindrical beam with a = b

and Ve T Ve For comparison, the maximum beam size for

the one-dimensional beam is also shown (from Fig. 9).
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where M 1is the two-by-two matrix

' 2
L 2 2ab + 5b2 2 b 2
Ve T T 2 % PRI
(a + b) (a + 1)
"os , (3-8)
a2 2 s 2 2ab + 5a2 2
R Ve T T o %
(a + 1) »P (a + 1)
SX \
and where & = is related to x and =z Dby
s/
Z
® 2
b . D
X = 1 + h(a +‘Ejr VX + BX 5
, (3-9)
2
o
7 =

a . P .

BRI CE) B

The normal-mode solutions have the form™ ==(;6 :)e 7, where
z

[M-w2]<:z> =0 , (3-10)

and where o satisfies det(M - we) = O.18

We haveApreviously distinguished two limiting types of envelope
motion, tightly coupled motion for which the x and =z amplitudes are

equal, &_ =+ 5_, and loosely coupled motion for which one amplitude
7 Tx z

approaches zero while the other remains finite. We find from Eq. (3-7)

w
. . . _a-=->" D .
that tightly coupled motion results if V. T V% T e b Ly or if
2
w

a -b D _ 1 s
V, TV =2 — = where vy = E(Vx + VZ}. The former condition
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produces a symmetric mode with ax = 6Z; the latter condition produces
an antisymmetxic mode with SX = -SZ, and is identical to the condition
that the individual particle frequencies Ve T évscx and v, = Avscz
be equal. Both conditions are plotted in Fig. 13. As the parameters
Vs Voo %, wpg depart from the curves in Fig. 13, the envelope motion
approaches the one-dimensional case.

It is informative to examine a few special cases in detail. TFor
a circular beam with a = b, the eigenfrequencies for either mode of

envelope oscillation are

2 2 2 5 2 . 2 2,2 1 L'
(L)i = EVX +2VZ -‘E(Dp i_V(QVX -2VZ) ‘+ :_ngp s (5'11)

and there are two limiting cases to consider. If |2vx2 - 2vz2! < %-wbz,
the eigenfrequencies and normal modes reduce to the tightly coupled

case examined in (a),
w 2 o | (ilt)
+ s M ’
P f‘ 14

, 1
2 5 = \\
-1/

]
=
<

no

1
&

no

(3-12)

e
I
=

<
no

i
POJN

e

J

2 . . 1
where @, = hyﬁwsc. This case requires that 1vx - VZ[ < §Av,-

On the other hand if lvx - yZ[ >> % Avsc, the eigenfrequencies and

normal modes are
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13. The beam parameters are shown for which the x and gz
amplitudes of envelope oscillation are equal. The plus
curve is the condition for the symmetric mode, the minus

curve for the antisymmetric mode.
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1
2 2 _5 2 : _ ( )
O 7 lLVx Te o By = . ?
(3-13)
» €
2 2 5 2 3
1
AVsc
where ¢ = [v _— << 1. TFor this case the frequency difference
X Z

lvx - vz| is sufficient to overcome the coupling due to the space-

charge force, and the normal modes are one-dimensional. In pfactice

Avsc ~ % ,» S0 that the dividing line between tightly coupled motion and

loosely coupled motion occurs for a frequency difference of

v, = v ]| z:lg . Thus, due to the weakness of the space-charge coupling,
X Z 1 .

a relatively small departure from the curves of Fig. 13 suffices to

produce one-dimensional motion.
Now consider the limit ,g — 0, but keeping ab constant so that

the charge density remains constant. The beam approaches a planar

configuration, and

2 2 2
2 ., 2 _2b 2 5_,”‘”;:'1“’ 3y
o, = by 2 O x = , 5
w
D
2 2 2 ° 5-1h)
®w, = Ly = - 3np s &, = (~1‘>

In this case the SX mode can have either of the tightly coupled forms

<’l‘)or ]'> for suitable values of lv. = v | and o 2, in agreement
1 -1 b4 Z P
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z direction than in the x direction, and this is usually the more
serious case.

We construct simplified response diagrams for several values of

g and A. The usual linearized response diagrams have a vertical
asymptote (the Av, =Av =0 curve) at each of the two resonant
intensities, and the 4st"#zo’ Aysz 4:0 response curves a@proach.these
asymptotes as the beam intensity approaches the resonant vaiues; The
main effect of the nonlinearity is to cause the frequency of each mode
of envelope oscillation to dépend on its amplitudé, which distorts these
linear response curves so that only bounded solutions are poséible.

For simplicity we consider'only the distortion of the ANSX =Av._ =0

SZ
asymptotes. We show in Appendix B that these curves are specified by

% = 1+4° 4 A.sin(n¢ +Q) |,
. , (B20)
2 2 . '
z= = 1+B- + Bsin(ng +q) ,
- where A and B are determined by the integral equations
2 21 .
A - “p . b A+ V14 A sin u o ‘
T 2v_ A 2n x(ax + bz) &
X X :
. 0 4
(B21)
2 v
B = “p . a_ 1+ 32 sin u du
2v _Av 2n z(ax + bz) ?
zZ z
0
where u = n¢ + Q, Avx =V, - %, and bwz =v, - %V. Theﬁe equations

were solved numerically, and the solutions are shown in Fig. 1bk.
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with Fig. 13. However, as g approaches zero, larger and larger
intensities are required to excite this mode. i.e., to shift o to
the integral frequency n of the gradient error. TIn the limit §v= 0,
only the 62 mode can be excited, and this mode is identical to the
one-dimensional mode examined in Section 2. TIn fact, the complefe

nonlinear envelope equations reduce to the one-dimensional form

dgx - vie

TR S =e ©2)
dez : vZ2 mpg

A s (3-16)

in this limit. The space-charge forces affect only the =z motion, and
if v_ is sufficiently far from a stopband that x 1, Eq. (3-16)
reduces to the one-dimensional envelope equation (2-6).

We conciude from these examples that the envelope motion will he
one—dimehsional for a wide range of beam parametefs; in fact, due to
the weakness of the space-charge coupling ahd because of the'changing
environment within the beam; the envelope motion is more likely to be
one-dimensional than two-dimensional.

We nOW'briéfly examine the effect of the nonlinearity. We

consider cases for which a is larger than or equal to b, and for

which v, is closer to a half-integer than Vs SO that

< 1. Then the resonant amplitudes are larger in the
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XBL689 - 3905

Fig. 14. The Avsx = v, = O asymptotes are shown for various

n
Vg T2 b
values of the parameters ) = - and k = 2 The
Vx T2
ordinate is x or =z 5 the abscissa is
max max

Msey _ _I_L_Avscx> .
A KA | Avy
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Figure 1lha shows the familiar case of equal frequencies and
Av ’
equal emittances (the —=2 - 0 curves of Fig. 10). There are two

Av
resonances, corresponding to the two modes of envelope oscillation,
and for each mode, the amplitude of the x motion is equal to the ampli-

tude of the z motion. For the other cases, the two resonant intensities

are further apart, and the amplitudes of the x and 2z motions are no

Ay
longer equal. Because of the choice of parameters ~——E-< 1 E-< 1,

>
Vo a
the largest amplitude occurs for the z direcfion and for the lower-
intensity mode. As the freguencies become different, but a 1is kept

equal to b, Fig. 1k (b) and (c¢) result, and the solutions approach

the limiting one-dimensional modes SX = (ZEL) and SZ = (i) that

were found before. 1In the other limit, % approaches zero and the
solutions also approach the one-dimensional case. In particular, the

curves of Fig. 1k (g), (h), and (i) are indistinguishable from the

Av » :
Z;E = 0 asymptote of the one-dimensional beam (Fig. 8). The inter-

mediate case of an aspect ratio g = % is‘shown>in Fig. 14 (4), (e),
and (f). In this case the lower-intensity mode is also very similar to

that of the one—dimensionél beam. .
Sunmary

We have investigated the envelope motion for a uniformly charged
cylindrical beam. Because of its two degrees of freedom, the envelope
has two modes of osecillation that can be excited by gradient errors.
The solutions for a beam with Ve =V, and EX = EZ weré presented in

detail; it has a symmetric mode of oscillation that is excited near the
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t

intensity Av, = 2Av, and an antisymmetric mode that is excited near
A”sc = % Av. For any type of beam, the process of resonance crossing

is similar to that for the one-dimensional beam. If the rescnances are
’ Av
crossed in the direction of decreasing Aic’ the beam grows a finite

amount, whereas if the resonance is crossed in the opposite direction,

AVSC b ANZ
the beam continues to grow as increases. As ~ or —=
Av a ANX
approaches zero, the resonances become further separated and the envelope
motion becomes one-dimensional. In fact for an aspect ratio of 2 = % 5
A - .
or for Z;E < %, the resonance in the z direction dominates and the

beam motion is essentially one-dimensional.
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4. Conclusion and Applications

We have considered the effect of gradient errors on a beam of
charged particles in an alternating gradient synchrotron. Usually,
gradient errors are assumed td limit the number of particles that can
be accelerated. This limit (the tranverse incoherent space charge
limit) is calculated by assuming that the beam size remains consﬁant;
then the number of particles that can be accelefated is limited to that
number which just lowers the effective betatroﬁ frequency to an integer
- or half-integer. Actually, the diameter of the beaﬁ depends-on the
osdillation amplitudes of the individual particles, and if a gradient
error causes these amplitudes to grow, the beam sgize élso grows. Thus
the usual caléulation is not self-consistent.

In Séction 1 self-consistent equations of motion for the beam
envelope are derived for beams with one and two degrees of freedom. We
assume that all the particles within the beam have.the samelazimuthal
veloclity and‘execute betatron'oscillations about the éamé equilibrium
orbit,'ahd that only linear forces act on the indivldual particles.

The last assumption requires that the charge density within the beam be
uniform and that the nonlinear components of thé image force be
neglected. The resulting envelope equationsAére nonlinear because of
the nonlinear dependence of‘the space charge force on the shape and
size of the bean. |

These envelope equations were solved in Sections 2 and 3. For
small amplitude oscillations of the one dimensional (planar) beam, the

beam oscillates with the frequency 2(v - % Aysc), and resonance occurs
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for n = 2(v - % Amsc), i.e., for the beam intensity corresponding to
A”sc = 3 Av. However, for larger amplitudes of oscillation, the
frequency of oscillation depends on amplitude as well as on intensity;

for fixed intensity, the frequency increases with amplitude. In

consequence, a slow traversal of the resonance in the direction of
Ay

increasing will cause the beam to grow arbitrarily large: near
the resonant condition n = oscillation frequency, the amplitude
increases, which causes the oscillation frequency to increase»until the
resonant condition is no longer satisfied; a further increase in Avges
or decrease in 'Ay, lowers the oscillation frequency and restores the
resonance condition, which causes the beam amplitude to again increase,
and so on. On the other hand, a slow traversal of the resonance in the

Av
. . . 8
direction of decreasing

causes only a finite increase in beam

Ay
size. The amount of beam growth depends only on the ratio = and

Aws
is less than 50% for Z;e-s 0.01.
The resonant behavior of the two dimensional (cylindrical) beam
is very similar. In this case two resonances are possible, although for

a wide range of beam parameters, including most practical configurations,

only one resonance occurs. An adiabatic resonance crossing in the
Av

direction of increasing causes an arbitrarily large increase in

Avsc

Av
causes only a finite beam growth, which is less than the one-dimensional

, ANy
‘beam,growth for the same value of — .

Av

We conclude that gradient errors will not limit beam intensity

beam size, whereas a crossing in the direction of decreasing

or cause particle loss, provided slow resonance crossings in the
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AV

direction of increasing" are avoided, and provided the ratio

Av

s . PP : . .
e 1s sufficiently small at the resonant intensity.

Application to AGS

- As an application of these results, we examine the two modes
of envelope oscillation for the Brookhaven AGS. The relevant parameters
o 19 3 e
- are obtained from van Steenbergen,”” who has measured the vertical vphase
space emittance and density distribution in the energy range 50-&0@ WeV.
First consider the situation immediately after the injection,
, 12 biclos 0ecuny moat of the merdime oo
~wnen 7.7 x 10 varticles occupy most of the machine circumference
(B =~1). At this time, the betatron frequencies in the absence of space
charge are v = 8.25 and v, = 8.92 (as extrapolated from Fig. & of

ven Steenbergen), and the vertical emittance is B, = 11.6 cm-mrad.

Thus b =

= 2.3 cm (R =128 m), and assuming an aspect ratio
a ‘ nr o .
= =2, we find Ay = 0.1h and Av = 0.28 (from the equations
b scx sCz , ‘

following.5-2). These are the space-charge-induced fréquency shifts
fof the individual particles within the matched beam, with‘the'constant
size a =L4.6 cm and b = 2.3 cm. CGradient errors cause the beam to
oscillate, and for small amplitudes, the two modes of envelope oscilla—A
tion are determined by Egs. (3-8) and (3-10)." In this case, the modes

are nearly one-dimensional, and we find

' - 1 ,
6 o= 9 - - -
©x x "3 Msex 2 O (e> ? (+-1)
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)-l- €
w, = 2v, - 3.ANSCZ ’ 5, = (J- ’ (4-2)
1 1
where e ~ 0.1. For the above parameters, 5O = 8.26 and 30, = 8.73,
and these frequencies are well removed from the
L 10)) = w,
2 "x Vx 2 ; jz
i 1 i ] (] i [} ] i .l ]
8.0 8.5 9.0

half-integral resonant values; an intensity of 17 x lOlEv particles is
required to shift %’wz to the nearest value, 8% . Therefore gradient
errors are not expected to cause particle loss in this region. (These
results are strictly valid only for uniformly charged beams, whereas
the AGS beam has a Gaussian charge distribution. We find in Part iI
that the frequency shifts for the Gaussian beam are approximately 1/3
larger than those for the uniform beam, and thus the lowest resonant
intensity is more nearly 13 x lO'12 particles.go)

During the first. few synchrotron oscillations after injection
(during the capture process), about 60% of the injected beam is lost,
and smaller losses continue until 15 msec (By = 0.5). At this time,
1.9 x ].O:L2 particles rémain, and these are assumed to occupy l/h of the
machine circumference. After this time, small particle loss occurs in
two regions: the first near 20 msec (By = 0.6) is associated with a

20% increase in the normalized vertical emittance, while the second near
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30 msec (By = 0.8) 1is associated with a 10% increase in the normalized

vertical emittance. The freguencies ‘mx and w, have been calculated

‘ 1 )
for these times, vsing N = 1.9 x 10"2, B = 0.25, and the measured

values of 'ﬁEZ, and they are included in Table I.

Because the zéro intensity betaﬁron freéuencies Vy and VZ
change during acceleration, the W, = 17 - resonance is- crossed near
By = 0.8, in agreement with the observed particle loss at 30 msec.
The resonance crbssing is approximately adizbatic since AVSCX/QVX
changes by 0.1 during £00 revélutions, and is in the direction of
decreasing

Avscx/&vx. The obszrved 10% increase in the normalized

vertical emittance is consistent with a stopband width of Ays = 0.002;

Ay

in this case, XY 0.04, and the veam grows 100% in the x direction
&N
X

-

and about 10% in the =z direction (using Fig. 3-3 and assuming thaf

(=

the 5X mode retains its one-dimensional Torm in the nonlinesr regime).

‘Further experiments are necessary to confirm this connect

[N

on
between the’pafticle loss at 30 msec énd the w, = 17 resonance
crossing. For example, if the stopband is enlarged by deliberately
ex;iting.a l?th harmonic gradient érror in the machine lattice, the
beam growth should exceed the avallable horizontal sperture and large

losses should cccur ebout 30 msec after injection.
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Table I. AGS parameters near injection
i 1 1
BY a(cm) Lvg,, v, Vo 5 o, 5,
0.50 3.8 0.18 8.88 8.46 8.76 8.41
0.60 3.2 0.16 8.86 8.50 8.75 8.45
0.70 2.8 0.15 8.8k 8.53 8.74 8.49
0.80 2.6 0.13 8.83 8.55 8.75 8.51
0.90 2.k 0.10 8.8 8.57 8.76 8.5k
1.00 2.3 0.09 8.82 8.58 8.77 8.55
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| PART II. COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL BEAMS
CONFINED BY HARMONIC POTENTTALS

In Part I we considered only one mode of collective oscillation
that occurs in only one type of beam, namely the gquadrupole mode that
is excited in uniformly charged beams by gradient errors. These restric-
tions enabled us to examine the large-amplitude nonlinear effects of
space charge. In this Part we examine the other modes of collecfive
ogcillation that cccur in both uniform and nonuniform beams. Wé restrict
our attention, however, to small-amplitude oscillations'and forbsimpli—
city to one-dimensional beams.

In Section 1, we use the linearized Vlasov eguation to find all
the normal modes and eigenfrequencies for the uniformly chafged beam;
in Section 2, the resulting mode structure is compared with that found
by Ehrman6 for an approximately uniform beam, and with that found by
Weibel®T for a neutraiized beam (plasma) with a Gaussian charge
distribution.

Before proceeding to these cases, it isviﬁformative to consider
the seemingly trivial case in which the Coulomb interaction is turned ‘
off. 1In the absence of space charge, the equation of motion for the

individual particles is

where the symbol 128 will be used in the remainder of this paper to

designate the unperturbed betatron frequency. Any particle distribution
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rotates rigidiy in the =x - 1 & space with the frequency wv,., and
: Vs E@ 0

has the form f = f(r, vo¢ +8), where r and © are defined in
o - |
Fig. 15. The normal modes are found by a double decomposition of f:

O<II—-'
al&

Wl
NV

Fig. 15.

the second‘argument of f 1is expanded in a Foufier series

_ -in(vo¢+9)'”
§: gn(r)e ' where for each n, gn(r) is an arbitrary function
n . : ‘

of r and may in turn be expanded in a complete set 6f functions,
gn(r) = 2: gmh(r). Thus'there’are a two-fold infinity of normal
m ‘ ’ )
modes of the form
‘ -ine -im ¢
, ‘ , .
fmn(r,@,¢> = gmn(r) € €

where the eigenfrequencies wﬁn-= ny, are harmonics of the unperturbed

betatron frequency. Each eigenfrequency is infinitely degenerate.
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In the presence of space charge, but on the assumption that the
space-charge forces are small in comparison with the external focusing
forces, each eigenvalue is split into infinitely many different eigen-
values that are clustered near the value 0V, and the new eigenfunctions
are mixtures of the unperturbed eigenfunctions. Since the unperturbed
eigenfunctions and the form of the space-charge interaction (Maxwell's
equations) are known, the perturbed eigenvalues and eigenfunctions can

“be found by stationary perturbation me'bhods.22 However, the unperturbed
eigenfunctions are infinitely degenerate, so that an infiniteforder
matrix must first be diagonalized. In any event the form of the eigen-
value spectrum is clear: the eigenvalues are discrete and occur in
clusters near the value rnvo. ‘

" 1. DNormal Modes for the Uniformly Charged Beam

tFormulgtion of the Problem

\

The Vlasov and Poisson equations can be written in the form

L ‘ w%+ v é§ + [- Vo ex + ai 8 x, ¢)} of ’% o ., (1-1)

ggg = 2 [ £(x, v, §) dv X

where v = %%, and x measures distance from the median plane in units

(1-2)

of the half-width of the stationary beam, a. The distribution function

; - Ni
f(x, v, $) is normalized to unity, and the quantity o " = —%E——E,- Ta
Y my

(the plasma frequency) has previously been defined as EVGAvéc

[Eq. (2-8), Part T1].
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The stationary solution of (1-1) and (1-2) that has a uniform
charge density is

. ‘ 1 :
£,(x,v) = , Ex - x ,
: 2 .
| 2 v]/& x2 z
14 = = =5 -
2 | o (@)
vwhere vy = 02 - “@2: ~ vy T Avs will be used in the remainder of

this paper to designate the effective betatron freqﬁency for the individual
‘particles within the stationary distribution. In the x - % space, the
particles move in circular orbits, and the stationary distribution

rotates rigidly with the frequency v.

<<

B

ey
N

Fig. 16.

Oscillations of this distribution are described by the perturbed
distribution f(x, v;‘¢) = fo(x,,v) + fl(x, v, ¢), which gives rise to’
a perturbed electric field, | £ (%, ")) ‘= Eo(x) + el(i, Qf) As in
Part I, we ﬁeglect the magnetic field components that arise ffdm the
transverse particle velocities. The evolution of fl(x; v, ¢) is

governed by the Vlasov equation (1-1), which we linearize about f,(x, v):
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of of of of

-GW]; + v B—}E;'— - VEX '5V—l- = = U)pg 61(_1{, ¢) WO . (1-1)

The left-hand side of (1-k4) is the total derivative of f, along an

unperturbed orbit, and consequently we can invert (1-4) and write £,
in terms of an integral of the right-hand side over an unperturbed

orbit. ot We do this explictly by writing (1-4) in terms of the polar

coordinates defined in Fig. 16:

' ‘ 2
oL of w df
Lo, 1. .2 ¢ in 6 —2 :
¥ V% S ” l(r cos 8, ¢) sin © = - (1-5)

‘ F - -l g g -0
or the normal mode solutions £, = f(r, ©)e 7, 1= (r cos 8)e 7,
(l-5)k-vbélé/5mes |

-i% . 1% "gbpg at, o
e le f(r? @)] = 5 £.(r cos @) Asin °5 - (1-6)

v

Since the function f(r, 6) must be periodic in e,

f(r, ) = f(r, © + 2r), the unique solution of (1-6) is

.
o 2 af -1;@ e 105 ’
f(r, 8) = :g Q._¢ f e’ £ (rcos o) sin @' ae',
lv dr _gnia_ﬂ@
1-e v e-2x
(1-7)
'k’".fi’eé 4 .
provided %-}) is not an integer. The case 9f integer values of 2 ig

v
/
considered later. FEquation (1-7) can be &ritten in terms of the

Cartesian variables x and v 'as o
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, ' w i—'li .
fx, v) = 1.0 B f e’ ) Lan (1-8)
' 0

where u =60' - @ ﬁa.n_d,:

b
[

' Vo o_s
xcosu-—sinu

(1-9)

v = yxsinu + v cosu

1Ez‘bqya:l:ion (1-8) specifies f(x, v) as aﬁ integral over the unperturbed
orbit. |

The perturbed electric field Ql(x, g) is relate:; to
fl(x, v, Qf) by Poisson's Equation (1-2), or alternatively by Maxwell's

second equation,

38, g

m— = =2 j vi(x, v, ¢) av R (1-10)
which follows immediately from Poisson's equation and the continuity
equation for charge and current dens‘i'ty. Using (1-8) and (1-10), we

obtain a single integral equation for E(x)

e -.vzwpe ® ¥, i »
in £ (x) = —2—-—0)—— [ av pd f e € (x' )V—- du |, (1-11)
Tl : . : .
v -0 -0
: e =1 A
) r C,‘\ T~ \j j
) ol ¢ ) ;
where x' and Vv' are given by (1-9). v < A L7

W
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General Soluti_on

We solve (1-11) by performing two integrations by parts.g5 First

integrate over v so that

X [_ go_ls;_g £(x') + sin u a€ (x) ]

” 3 du , (1-12)

where the integrated terms are zero at the limits v = + ». Then

integrate by parts over u to eliminate ag

au

2 o0 .

2w 2/v o 30,
£(x) = —2— f av fo f e’ E£(x') sin u du
2115 o 0
e V-1 (1-13)
e ' . 1 2 2 2.,-1
We eliminate the function £ = Z[v (L -x") -v ]2 from (1-13) by

replacing v bysv V1 - x2 cos 1, so that

) J:Y,:,n,,;h‘
¥ E(xcosu+ V1- xg_ sin u cos 7)pdu.

(1-14)
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Finally replace x with cos £, so that

I .2; ; 1 2 ot 18y o
E(cos &) = 2 5" j dn f e’ E(cos V) au ,
o Co2m 2pi® ; Ly
e Vo

- (1-15)

where cos ¥ = cos £ cos u + sin £ sin u cos 7. The angle V¥ will be

recognized as the angle between two vectors with polar coordinates Ns

24

€ and O, u rpspectively, as shown in Fig.vl7.

It is now easy to show that the solutions to (1-15) are just

Legendre polynomials. We use the addition theorem for spherical

‘harmonices to write
P (cos ¥) = - S ¥ (&, ) Y (u, 0) (1-16)
I - 2n + 1 mn 77 mn ’

where the integration over 7 in (1-15) insures that only the m = 0

term Pn(cos ) Pn(cos u) contributes to the sum. Thus, if

£ .,(x) = P (x), Eq. (1-15) is satisfied identically provided
n+l n : ~ .
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_ 2,2 2x ‘
Oy /v ou , L ‘
e V-1 © | | o (1-17) -

>

which specifies the'eigenfrequencies w. A few of the functions 'Kﬁ(m)
- are included -in Table II; the rest may be found by using the recursion
relation

6 - (n- %) 2

Kylw) = S=——==5—2-x (@) . (1-18)
e JERY |

The eigenfunctions for the perturbed electric field are therefore

the Legendre polYnomials .
E.(x) = P, (x), for m=1,2,3,--:, (1-19)

and for each value of m, the corresponding eigenfrequencies are deter-

mined by
'Km(wmg) = 1, jor n = mm-2,m-b, -, (1-20)

Ih,gehéral, each’eiceﬁfunCtidn Elm(x) has more than oné eigénfrequency:
as céﬁ be seen from~Taﬁie iI, there is one eigenfrequency each‘for

m=1 and ’mvi 2, but two for m = 3,4 andithfee for m= 5,6, and

so on. We label the various eigénffequénéies of_(l-EO)‘so that in the

approaches nvy.

linit of zero intensity, w0

The eigenfunctions fmn(r, 8) corresponding to the eigen-

frequencies a  are determined by Eg. (1-7) to be
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Table II. The functions Kn(w) are listed for n < 7.

n Kn(m)
2 ) .
S " v AN
1 - ?-L—E-: \NE‘)G
Y.
2 N : e 3 ¥
a) W = Ryl W
- b w> = huyt
e w =-2v
a)2 2
3 P . @
2 22 2 2
o -3y w -y
(.02 N2 2
L o) L =y
2_ 22 2_ 2%
© ° 2 22 2
P Lo =27y W
5 5 5 55 B 3
w -5y w =3V w - v
wg 2 2 2 2
6 P . w =3y w -y
2 -2 28R 22
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-
‘ . (DPE l (r) / (Dmn
fmn(r, 8) = ;§— = E: - (1 — sin k6 - k cos ko) ,
k.: - mn (1_21)
V2

where the sum over k 1is finite and involves only even or only odd
numbers. The radial functions Rmn(r) are polynomials in r, and’ a
few are listed in Table ITI. For m > 2, the sum in (1-21) has more
than one term, and the simple n-fold rotational symmetry of‘the
unperturbed eigenfunctions is absent. |

Low Intensities

For wp2 << voz} these eigenfunctions and eigenvalues reduce

to the form predicted by perturbation theory. The eigenfrequencies

have the form

(Dmn = ny + T AVSC f) ’ ‘ : (1-22)

where v = vy T wpg ~ vy T Aysc and Whereva féw‘of the coﬁstants

Agn @re listed in Table IV. These eigenfrequencies are shown in

Fig. 18a for the intensity corresponding to Amsc = % » but the eigen-
frequencies with m>n + 2 are clustered tooAnear the values nv to
be reeolved. Figure l8b shows an enlarged region of the spectrum near
ny: all the eigenfrequenciee (except Wy = vo) are shifted down froﬁ
the unperturbed values nvy, and as the radial mode numbef m increases,
the eigenfrequencies approach ny. It is also evident from Eq. (1-22)

or Fig. 18a that as the mode number n increases, theﬁeigenfrequencies

become more tightly clustered around the frequencies nv.
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Table III. The radial functions Rmn(r) with

m< 7 are listed.

n
BN 1 > 5
1 r
' 1(3 3 _ 3.3
5 Q(Er r) g*

1(57 5 _ 3.5 3 357 .5 _ .3\ 57 .5
EREIC R rx) 2GE-0) g
n
N 2 L 6
2. %re

Y P L
: (3 - 5°) %
6
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Table IV. The coefficients Agn in EQ. (1422)

are listed for m < 7.

N 1 3 5
1 1
52
3 - == = -0.125 2 - 1.125
o2 23
1 6 52-2 52'1
5 - ~ ~0.01 - ~ - 0 ~ 1.
p 2? 5 7 0.35 o l 365
N u 6
2 1
1 5 '
L - — = =0.250 ~==1.25
22 22 -
. v 2 ‘
6 - 2~ -0.039" -1~ 0. 211,
7 39 'E—E 0.428 7 1.475
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Fig. 18. Eigenvalue spectrum for ﬁ”sc = % 5 (b) is an enlarged

region near ny. The eigenvalues occur in clusters near
ny and, as n increases, the clusters become more tightly

grouped around nvy.
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The low-intensity eigenfunctions haVe the form

daf

n ‘L 770 -ing 2 '
fmn(r) G) = ?\._— Rmn(r) T ar € + O(w ) ’ (1'25)
and therefore the complete distribution f = fO + fmn becomes
1 2y
f = + O((D‘ ) ’
2rv V1 - r° o+ eRmn(p) cos n(v@ + 9)
(1-24)

where the term proportional to wbg involves mixtures of éther‘zero_
order eigenfunctions. A few of the radial functions Rmn(r). are shown
in Pig. 19; note that the pefturbation fof the modes with m =n is
the largest near the surface r = 1, whereas the other modes are close
to éero there. TFor this reason, the m =n modes are referred to as
surface modes. They produce relatively large displacements of the beam
surface, as opposed to the m + ﬁ modes for which the perturbgd’motion
is largely confined to the interior of the distribution.

The distribution (i-EH) rotates in an apprbkimately rigid

fashion in the x - % space with the frequency nv, and has an approxi-

mate n-fold symmetry of rotation and radial Variation with = ; £ nodes;
in real space, the perturbed éharge density is proportional to

de_l(x)

- As m increases, the overall perturbed charge density tends

to cancel with itself, and thus it is not surprising that the éigen-

frequencies for the modes With;large m approach ny; perturbations
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Fig. 19. The radial functions Rmn(r) are shown for even values
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of m and n. The vertical scale is not indicated, and

differs from figure to figure for clarity.
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that produce little net charge density will only slightly perturb the
stationary circular orbits, and consequently will be carried aiong
nearly intact with the freguency v of the stationary distribution.
The eigenfunctions fmn(f, @) found so far do not fornAa » !
complete set.e5 For example, among the zero-intensity eigenfunctions
(1-23), there are none with the form gmn(r) e 189 here n=0 or,
in general, where n > m. For'ccmpleteness;badditibnai eigenfunctions
are required to fill in the blanks of Table III, as well as an additional
column at n = 0. It is shown in Appendix C that these additional
eigenfunctions exist and have the eigenvalues nv that wene éxcluded by
the form of Eq. (1-7) and following. The new eigenfrequencies do not

change the form of the spectrum, but now the value ny is degenerate.

High Intensities

In the opposite 1limit of very high intensities, the eigenfunctions
and eigenvalues also reduce to a characteristic form. The maximum

intensity occurs for o and corresponds to that value of space-

p = Y0
charge force for which the repulsive self-force exactly dancels the
external focusing force -- no net force acts on the stationary distribu-
tion. 1In this case, the particles comprising the stationary distribution
have no velocity (the beam emittance is zero), and T, is completely
characterized by its charge density eno(x). Any perturbation can
therefore be expanded in a’single infinity of functions, rather than in
the two-fold infinity required before. Furthermore; any perturbation

of such a zero-temperature plasma (the external force is equivalent to

a neutralizing background of immobile ions) must oscillate with the
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plasmg freQuency wb' Thus, in this 1limit, the eigenfunctions must
réducg to a singlevinfinity of functions, and their eiggnfrequenéies
mustvéll have the same value w, = mbf
This is indeéd:the case. A few of the eigenfrequencies w
are plotfed as a fuéctfon of intensity in Fig. 20§ as thé intensify
inecreases to its maximum #alue, the eigenfrequencies O for the sur-
'facé modes all approach the plasma fregquency whereas the eigenfrequencies
for the other modes épproach zero. The eigenfunctions for.the electric
field €(x) [or equivalently the charge density en(x)] remain
Légendre polynomialé; and. since each eigenfunction E:n$x) now has only
one eigenfrequency, any perturbation is completely specified by the
single infinity of eigenfunctions em(x);

The Dipole_and Quadrupole Modes

1fhe dipole mode with m=1 and n =1 is particularly simple.
The eigenfrequency ®,, specified by Kll(w) =1 is found from.

Table IT to be
o, =\ +ao = v (1-25)
11 | = Vo v | |

so that this.modé oscillates with the unperturbed betatron frequency
.yd; ihdependent,of intenéity.‘ The perturbed electric field has the
form.yyél(g, ¢) =ce 0 , and the cqmplete particle distribution

f = f6-+ fli is given to first order in e by

'f(r,"e, §) = — __1 1

éﬁv Vl.- r2 + 2er cos(vo¢ + 0) 2nv V1 - r'€

(1-26)
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Fig. 20. The eigenvalues specified by Km(wmn) =1 are

shown for m = 9,7,5, and 3. As the intensity increases
to the maximum value corresponding to wp = Vg the
eigenvalues for the m ;é n modes approach zero; those

for the m = n modes approach ‘w_.
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where the variable r' is measured with respect to the moving
coordinates x = e»cos(vo¢ +6) and % = ¢ sin(vo¢ + @), as shown in

Fig. 21. Therefore Ehé entire distribution is displaced in the circular

=

Fig. 21.

path indicated, and in real space, the beam oscillates rigidly back and
Aforth at the frequency vy

In addition to this rigid dipole mode, there is an infinite
number of nonrigid dipole modes wiﬁh n=1 and m= 3,5,7,--+ and

de—l(X) '
— = The charge density

with a charge density proportional to
for these modes oscillates in a nonrigid fashion, and the eigenfrequency
oy approaches (vo - Amsc) as m increases.

The quadrupole mode with m =2 and n =2 has the eigen-

frequency

_— 2 2 _3
Wy = Vo ta o~ E(VO favg) (1-27)

which is the same frequency as was found for the small-amplitude -

oscillations of the one-dimensional beam examined in Part I. 1In fact,
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it is straightforward to shOW'that the complete distribution

f = fO + f22 is just'the small-amplitude limitvbf the uniform one-
dimensional distribution, Eq. (1;17) in Part 1.26 Thus, this is the
"breathing ﬁode" in which the beam expands and contracts, vet maintains
a uniform charge density.

The quadrupole modes with n =2 and m = 4,6,8,--+ have a

de_l(X

dx

) as m increases.

nonuniform charge density proportional to » and their eigen-

frequencies @y approach 2(vo - A”sc

Excitation by External Forces

Machine imperfections excite the various normal modes. In this
case, the linearized Vlasov equation has the form

) : . of
FruvE- g - cwles ) a0 o

where E(x) e-lp¢ is the known external driving term and P 1is an

integer. The forced solutions of (1-28) oscillate with the frequency

.,
~

P, and can be found by the same methodsftha%gwére used to find the
normal mode solutions. In particular, the defining equation for Ei(x)
is just Eq. (1-15), but & (cos V) on the right-hand side is replaced

vy E(cos ¥) + E(cos V). The solution for the forced electric field is

€ = ) BLIop(n) (1-29)

where the coefficients a,6 are determined by
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kK (p) . '
an_l = Wﬁ f Pn-l(x) E(x) dax . (1-50)
‘ , -1

Thus an external driving term of the form E(x) = Pm_l(x) excites only
the em(x) modes, and resonances occur for p near any eigenfrequencies
@~ where n = m,m-2,m-b, -,

A magnetic field error has the form E(x) = €, and excites only

the rigid dipole mode (m=1 and n =1) with

B - 2 . (1-31)

A gradient error has the form E(x) = ex, and excites only the uniform
quadrupole mode (m =2 and n =2) with
2
ew "X

82(}{) = ) P2< 5 ’ (1'52)
P - ,'l'vo + Bmp

in agreement with Part I. Nonlinear driving terms excite the higher-
order modes and cause resonances for integral values of On® In the.
next séction, we examine these respnanées in more detail and compare
them‘with ﬁhe resonant frequenéies"found<by Ehrman for a nonuniform
beam. |

We conclude this section with a few general observations. For
intensities of interest in AG synchrotrons (Amsc < vo),‘the normal

modes fmn for the particle density in x - % space have an gpproximate
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n-fold symmetry of rotation and radial variation with — ; L nodes;
e, (x)
in real space, the charge density is proportional to ol

dx

The distribution oscillates with the frequency

W, = n(vo - Avsc) +— v, , which differs from t?e‘zero-lnten51ty
: . ‘ ‘mn
value nvy by the two frequency shifts nAysc and - Avsc. The

first frequency shift is a purely geometric effect: a pertufbation that
produced no electric field would rotate rigidly with the frequency. v

of the stationafy distribution, giving riée to the eigenfrequency ny.
However, because the perturbation is charged; the circular.orbits of the
stationary distribution are distorted, and this distortion gives rise to
the second frequency shift. This frequency shift is largeSt for the
lower-order, more coherent modes, and becomes progressively smaller
(TablebIV) for the higher-order modes, since the perturbed charge
density tends to cancel with itself: the most coherent mode is the
rigid dipole mode for which W, = (VO - Avsc) + Av_,, whereas for the
uniform quadrupole mode Wyp = 2(vo - Aysc) +,% AMSC’ and for the (5,3)
sextupole mode QBB = 5(vo - Av ).+ % Avéc; For the higher-order

scC

modes, especially the nonsurface modes, the eigenfrequencies are

o

shifted very little from the value n(vo - v,

Finally, because thé eigenfrequencies are real and discrete,
there can be no Landau damping.27 This type of damping‘requires,a
continuous spectrum and discontinuous eigenfunctions, so that any
initial perturbation that is analytic consists of an infinite number

of eigenfunctions, each infinitesimally excited; in the course of time
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the phase relationships between the various modes is destroyed and the
perturbation damps exponentially to zero.28 For any system of charged
particles that are confined by a harmonic potential, the eigenvalue
spectrum is discrete and the eigenfunctions are continuous;29 however,
a ﬁery localized perfufbation contains many modes and exhibits an
approximate exponential damping until the phases of the various modes

become randomized.
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2. Extension to Nonuniform Beams

Resonant Frequencies for the Uniform Beam

We have seen in the preceding section that an éxternal driving

term of the form Pm—l(X) e-:Lp¢ excites resonances if the integer p

is near any of the eigenfrequencies ah# where n = m,m-E,m-h,';-. For
low intensities, W = 0v + EEE»AVSC, and therefore resonances occur
for p near my, (m-2)v, (m -4)v, ..., as indicated below:
The external field ___causes resonances for p near

PO v

Pl 2v

P2 v 3v

P5 2y by,

Ph v 3v Sv

P5 2y by Ev

(2-1)

Dipole modes are excited by Po, PE’ Ph; '+ +, gquadrupole modes by

Pl’ PB’ P, +++ , sextupole modes by PE’ Ph’ *** , octupole modes by

PB, P5, *++ 5, etc. In the limit of gzero intensity, these resonances

reduce to those obtained from the single-particle approach; the equation

of motion for the individual particles is

2

d"x 2 ] V
;;; tvg X o= e Pm_l(x) cos pd (2-2)
Qv
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and if we consider only small departures 5x from the stationary orbits
x=A cos(v0¢ +a), where A and a are constants, resonance occurs
for p = my, (m -2)vo, (m - h)vo, *++, as indicated in (2-1).
However, ifﬁnonlinear terms in 8&x are allowed in (2-2), the
resonant growth cauéed by the driving term 2 cos p¢ is usually
serious only for mJ<v2; for larger values of m the amplitude
dgpendenée of vo,'which results from the nonlinearity of the driving
term, generally causes the resonant growth to be negligible.ao
Presumably this 'is élso true in the presence of space charge. Then,
since ¥ can be expressed in terms of Legendre polynomials of order
less than or equal t6 m, only the driving terms Pm_l(x) and resonant
frequencies Oon with m< 3 need be considered, namely W1

Coos
©310 D53

Resonance occurs for integral values of these eigenfrequencies,

and from Table IV we find:

Driving term Resonant condition Mode (m,n)
2 vy = n : rigid dipole (1,1)
P : vio= 24 2 Av . uniform quadrupole (2,2)
1 Yo T2 T T Ve : P ’
v. =1 +<2~Av : nonrigid dipole (3,1)
0~ 8 “'sc ’
Ps Ca » |
Vo =3t g Ay, sextupole (3,3)

?

,(2-3)
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where n is any integer. These resonant values of vy are shown in
Fig. 22 for the beam intensity corresponding to Awsc = % 5 additiona}
resonances are also included, and the dipole, quadrupole, and sextupole
modes are drawh separately for clarity. The rigid dipole-mode is
excited by PO at integral vaiues of vge whereas the nonrigid dipole
modes are excited by Pg,.Pu, +e+ for vy hear ‘n + Awsc' The uniform
quadrupole mode that was examined in Part T is excited by Pl at

3

vy = % T Avges whereas the quadrupole modes that do not maintain a

uniform charge density are excited by PB’ P_, *** ‘for near

Yo
% + Avsc' The sextupole, octupole, andAhigher-order modes are excited

n n . . .
for Vo near i+ Av ., where F are the zero-intensity subharmonic

frequencies.

Comparison with the Water-Bag Distribution

Ehrman and dePackh6 have examined the oscillations of the
stationary distribution that has a uniform particle density in phase
space; the particles are ¢onfined by an external harmonic potential and
oscillate with the frequency Vg in the*éb;encé,of space éharge. Since
the volume occupied by any group of particles in phase space is incom-
pressible (neglecting collisions), this uniform particle distribution

acts as an incompressible homogeﬁeous fluid, and hence the name water-

bag distribution.

a. The stationary distribution

We will examine the stationary distribution in more detail
before describing its small-amplitude oscillations. For low intensities,

the distribution has an approximately circular boundary in the
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Fig. 22. The resonant values of 128 for'the beam intensity

corresponding to A”sc = % are shown for the dipole,
quadrupole, and sextupole modes excited by Pm(x) with

ng 5.
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X - %— 33 Space, and a nonuniform charge density in real space. As
0

the intensity increases, the charge density becomes more and more uniform,
until at the limiting intensity for which the space-charge force exactly
balances the focusing force (the plasma frequency equals vo), the charge
density is exactly uniform and the particles within the stationary distri—

bution are motionless (the beam emittance is zero).

The zero-order distribution fO(r) = ;i; , 0<rgi1, is
0 ‘
shown in Fig. 23b, where r is the radius of the individual particle

r

orbits in the x - %— gk‘ space in the absence of space charge, and fO
0 ‘ ‘

is normalized so that [fidxdv =1 (v = %%). For AG synchrotrons the

space-charge forces are small in comparison with the external focusing

force, Avsc < vo,'so that the stationary distribution in the presehce

of space charge differs from the zero-order distribution fo(r)' by
Dy '

terms of order For AN typically % and v, =~ 10, this

v 0
difference is apprgximately 2%, which is negligible. The normalized
charge density po(x) = ffo(r)dv = % Vi - % ’for the zero-order
distribution is also shown. Since the charge density is not uniform,
the self-forces are not linear, and the particles withih the stationary
distribution oscillate with different frequéhcies. It is shown in
Appendix D that the revolution frequenciés for the individual particles

Lv
within the stationary distribution are given to first order in ¢

by

v(z) = vy - v e(r) | (e
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20r g (r)
0 v 10
20r
I
- 0 r }.0

(c)

XBL689 - 3900

Fig. 23. The uniformly charged beam (a), water-bag beam (b), and

Gaussian beam (c) are shown: fo(r) is the ‘zero-order
stationary distribution, po(x) is the normalized charge
density for fo(r), and v(r) = vo = Avg, g(r) 1is the

frequency of the individuval particles within the stationafy

Amsc

Yo

distribution to first order in
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where
2

J[ po(r sin w) cos® w dw s (2—5)
0

g(r) =

a1

involves an integration over the unperturbed orbits. The quantity Avsc

has been defined before [Eq. (2-8), Part I]. It is proportional to the
average charge density within the beam, and is identical to the space-

charge-induced. frequency shift for a beam with uniform charge density,
1
2,
and (2-5) give .v(r) = constant = vg = Av,,. TFor comparison, the zero-
1 )
2

i.e., for the normalized charge density-,po(x) = constant = =, Egs. (2-L4)

order distribution for the uniformly charged beam (fO =

2ﬁv0“ 1 -7

is also shown (Fig. 23%a), as well as the Gaussian distribution observed
2.2 -2.2r2
= — e

]
in the Brookhaven AGSf9 (Fig. 23c), namely f —=
' 0

0 , with the

normalized charge density po(x) = \ig;g e_E'EX?. Note that the charge
distribution for the water-bag beam is intermediate between that of the
- uniform beam and the Gaussian beamn.

For the same total charge Nl? and the same beam size a, the
water-bag and Gaussian beaﬁs have a higher central charge density than
the uniform beam. Ae a result, thebspace-charge-induced frequency
shifts Avscg(r) are larger for the qenuniform beams, since the-
cost W term in Eq. (2-5) Weights the inﬁegration over po(r sin W) in
the favor of small values of the argument> r sin w. For>the water-bag

) _ L
beam v(r) varies between v(0) = vo T T Av, and
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32

v(1) = Vo - ;;E'Aysc ~ vy T 1.08 Avsc; for the Gaussian beam it varies

- 1.09 AVSC'

between v(0) =~ vo - 1.67 Aysc and v(1) = o

b. Small-amplitude oscillations

Ehrman has found the small-amplitude oscillations that perturd
the boundary of the stationary water-bag distribution while maintaining
the uniform particle density in phase space, namely the surface modes.
These modes, for which the perturbation is large only near the beam
boundary, are very similar to the m = n surface modes of the uniformly
charged beam. The additional nonsurface modes that perturb the uniform
particle density within the boundary were not found.

For low inténsities, the surface modes have an approximate n-fold
rotational symmetry iﬁ the x ; L %% space, and oscillate with the

, Yo
. . 31
requencies

. : 8 n

w, = nv(1) +/§ n—g'———l Avsc s (2-6)
where n =1,2,3,"**. For n =1, W = Vo and this is the rigid
dipole mode for which the beam oscillates rigidly back and forth at

the zero-intensity betatron freguency. For the first three surface

" modes we find
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Waper-bag Uniform béam
® = VYo : ®1 = VYo
a, = 2y(1) + 0.h5k N Wy = 2V + %Avsc
wy = 3v(1) +0.201 v, wgg = 3v + 3 Mg, (2-7)

For larger values of n, the frequency shift from ny(1l) is very nearly

. . nn
Zan A”sc’ which has the same form as the frequency shlft — Av, for

the uniform beam, where MNn is a number of order one that increases
slowly with n (Table IV). As n approaches infinity, the eigen-
frequencies w, approach nv(i); the}perturbed charge density'tends to
cancel with itself, and the perturbation is carried along nearly intact
at the frequency of the boundary particles, v(l) = v - 1.08 N

As the intensity increases to ifs limiting value, corresponding
to ab = Vg the eigenfreQuencies @, appfoaéh the plasma frequency
-ab in the same manner (Fig. 3 of Ehrman6) as do the eigehfrequencies'
for the surface modes of the uniform'beam:(Fig;:EO). We conclude that
the eigenfrequencies for the surface modes of both distributions are
very similar.

The low~intensity»reSOﬁantfconditions for the first three

surface modes of the two distributions are

i
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Water-bag Uniform beam
VO = n' VO =N
e =240 853 Av VA = =+ 2 Ay
07~ 2 ) sc 0~ 2 "L Ve
n I
vo =3 * 0:983 dv, o =3 T8 . (2-8)

The driving terms that excite these water-bag modes have not been
determined, but 1t is reasonable to assume that they are similar to
those for the uniform beam. For example, we expect a gradient error to
excite primarily the n = 2 quadrupole mode, but also to excite weakly
the additional nonsurface quadrupole modes. In the same spirit, we
expect only the low-order water-bag resonances listed in (2-8), plus
peihaps one or two nonsurface modes, to be detected in accelerators;
the nonlinearity of the driving terms required to excite the higher-
order modes should prevent additional modes from being observed.

Gaussian Beanm

The elgenfrequencies for the Gaussian beam have not been found,
but Weibel21 has solved a wvery similar problem.b He considers a one-
dimensional system of electrons in an external harmonic potential, and
finds the eigenfrequencies for the small-amplitude oscillations about a
stationary Gaussian distribution. Howevér, he considers only the case
for which the chargé density of the stationary distribution is completely
neutralized by a background of immobile positive ions so that all the
particles within the stationary distribution oscillate with the same

frequency .VO' In contrast, the charge within an accelerator is not
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neutralized and the individual particle frequencies for the Gaussian

distribution vary between y(o) ~ vy - 1.67 Awsc and

(1) ~ vy -~ 1.09 ANsc' In any event, the eigenfrequencies found by

Weibel have a form very similar to those of the uniform beam and the

water-bag beam.

2

For the neutralized Gaussian distribution fo(r) = 2:2 6—2.2r.,

Vg
Weibel find332
W = vyt l.22 Améc B a%l f vg t 0;13; Avg,
Wy = 2vg * 0.356 AV, s W, = 2vy+ 0.089 ANSC',
g = 3vg + 0.222 Avg, s (2-9)

and it can be seen that the frequency shifts from nvq are very
similar to the frequency shifts from nv(1l) for the water-bag beam

(Eq. 2-7) and from n(vO - Aysc) for the uniform beam. In particular,

the frequency shifts for the surface modes are:

‘m=n Gaussian Water bag Uniform
1 1.22 Amsc l.OB'Awsc | Avsc
2 0.356 Av 0.454 Ay = Av
sc : sc 2 scC
, | : b
5 0.222 AVee 0.291 Av, g MVse . (2-10)

For the two nonsurface modes of (2-9),
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(m;n) Gaussian Uniform
(3,1) 0.131 Av,, 0.125 Av_,
(4,2) 0.089 Av_, 0.125 Av,, - (2-11)

These results for the neutralized beam can be extended to the
charged beam providéd'the effect of the frequency spread v(0) - v(1)
within the charged beam can be neglected: we assume that all the parti-
cles within the stationary distribution oscillate with the same frequency

v and replace in (2-9) by the effective frequency v. The value

of 7 1is determined by the requirement that the rigid dipole mode,
which in this case is obviously the m =1, n =1 mode, oscillate with
the frequency Vo Then v ~ Vo - 1.22 ANSC; this 1s near the mean
frequency [v(r) fo(r) dxdv =~ v - 1.28 Av,, within the stationary
distribution and is a reasonable extrapolation from the effective
frequengles vg T Awsc and Vo - 1.08 Aysc for the uniform and water-

bag beams. With this replacement in Egs. (2-9), the resonant conditions

for the Gaussian beam become

Vg = B, Vg = Bt 1.09 Avsc B

= 2+ 1.0k A = 241074
vo = 3T RO Avge Vo = 3T 0T Avge

= 211 A . 2-12
Yo T 3 -5 Vee 7 (2-12)

which are reasonable extrapolations from the known resonant conditions

for the uniform and water-bag beams (Eq. 2-8).
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3. Conclusion

We have investigated the small-amplitude oscillations of a one-
dimensional system of charged particles that interact with one another
by Coulomb forces and are held together by an external harmonic pbteptial.
Because the large number of discrete particles (approximately 1012),
each with two degrees of freedom, has been replaced by a continuous
distribution, the system has a twofold infinitY‘of degrees of freedom
and therefore a twofold infinity of normal modes and eigeﬁfrequencies.

In the limit of zero intensity, the eigenfrequencies fof any
stationary distribution are just harmonics of the zero-intensity
betatron frequency Vg2 and each eigenfrequency is infinitely degenerate.
Resonances occur for integral values of nvy, and these are Jjust the
integral, half-integral, and subharmonic resonances that are familar from
single-particle theory. For intensities of interest in AG synchrotrons
(A”sc << VO), the degeneracy is at least partiallyvremoved, and the
elgenfrequencies occur in clusters near the ﬁnpefturbed eigenvalues
nVy- For larger intensities, the chargé density‘of the stationary
distributions becomes more and more uniform ﬁntil at the limiting
intensity, for which wp'= Vg the charge density is exactly uniform.
Consequently, ﬁhe eigenfrequencies for the surface modes approach the
plasma frequency, while the eigenfrequencies for»the nonsurface modes
approach zero. |

The eigenfrequencies and normal modes for the stationary
distribution that has a uniform charge density iﬁ real space have been

investigated in detail. The eigenfunctions for the perturbed electric
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field are particularly simplez being just Legendre polynomials. For low

intensities, the eigenfrequencies are W = BV + o OVger where

V=g T Aysc 1s the revolution frequency of the particles within the
' A
stationary distribution and —EE-AWSC is the frequency shift induced by

the collective oscillation. In the x - %— %% space, the eigenfunctions
0

have an approximate n-fold rotational symmetry and a radial variation

with = é 4 nodes; in real space the perturbed charge density is
dap
proportional to dﬁ-l' The frequency shift from nv is relatively

large for the low-order, coherent modes, while it is very small for the
higher-order modes, for which the pérturbed charge density tends to
cancel with itself.

External driving terms of the form Pk(x) cos pf excite the
m=k+1l, n=k+1, k-1, k-3, +-- modes and cause resonances -
for W, near the integer p. However, the resonances with m > 4
will generally be suppressed by the nonlinearity of the driving term
required to excite:them. Therefore, from the twofold infinity of
possible modes, only foﬁr are likely to be serious for the uniformly
charged beam: the rigid dipole mode (m=1, n=1), which is excited
by magnetic field errors for integral,valueé éf Vg3 the quadrupole

mode (m =2, n =2), which is ekcited by gradient errors for

s

Yo + E-Avsc; the sextupole mode (m.= 3, n = 3), which is excited
n 7 .. _
by Pg(x) for vy = 3 g AV and the nonrigid dipole mode (m = 3,
B . . y _ 9
n = 1), which is excited by PE(X) for vy =n+3gAv,,.

Two beams with nonuniform charge density were also examined, a

Gaussian beam similar to that observed in the Brookhaven AGS and the
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water-bag beam, which has a charge distributionintermediatebetweén
that of the uniform - beam and the Gaussian beam. Despite the relatively
different'charge distributions, the eigenfrequencies for the surface
modes of the Water-bag‘and uniform beams have the same form and very
similar numerical values. ’The eigenfrequencies for the Gaussian beam
were extrapolated from the known eigenfréquencies for a neutralized
Gaussian distribution, and are also very similar in forﬁ and numerical
content to those for the uniform and water-bag beams. Because of this
similarity, it is reasonable to assume that corresponding modes in the
three disfributions are excited by the same driving terms; for example,'v
a gradient error is expected to excite primarily the n = 2 .surface
modes, causing a resonance for vy = % +»%ﬁAvsc in the uniform beam,
for v, = % + 0.853 Av, ., in the water-bag beam, and for
Vo = g + 1.0k A”sc in the Gaussian beam; In the same spirit, only the
‘first three surface modes and one or two nonsurface modes are expected
to be observable in accelerators, in analogy with the uniform beanm.

For the future, it is possiﬁle that the’exact eigenfrequencies
and normal modes for any distribution, at least to first order in

A”sc

% > can be found by stationary perturbafion methods, i.e., the
methods that are used in quantum mechanics to cbmpute perturbed eigen-
'functions and energy levels. Since only five or six modes need be

examined, the perturbation approach should converge without éxcessive

calculation. Perturbation methods might also be applied to two-

dimensional beams to examine the effects of space charge on sum and
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difference resonances, andito three~-dimensional beams to examine the
space-charge coupling between longitudinal and transverse motions. Since
relatively few modes are involved, it might also be feasible to determine

the large-amplitude behavior of these modes by analytical methods.
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APPENDICES

: A.' The Nonexistence of Uniformly Charged

] Three-Dimensional Beams

We are given an ensemble of three-dimensional harmonic

oscillators with the Hamiltonian

i

: 2
HF, @) = p° +a°, O<HSL . (A1)

Becéuse of the inequality, the accessible region in phase space is a

' six-dimensional unit sphere; in configuration space it is a 3-sphere.
Does there exist a spherically symmetric distribution f(p2 + q2) ithat
has a uniform projection onto thé 3-sphere? The following necessary
condition for'the existence of such a.distribution has been found by
Maurice Neuman. |

Theorem: . The:spherically syﬁmetric distribution f(p2 + qe) does not
exist if its projection 'p(qz) = ff(p2>+ qg)dspA violates any of the

following inequalities:

(3 VY2 >
N H_Q(II-:I:) E) OSTSE,
p(T)
< SVr-T fsT<L . (42)
T

The maximum permissible value of p(T), which corresponds to the equal
sign, is shown in Fig. (Al). An immediate consequence of this theorem
is the noneiistence of a spherically symmetric distribution f(p2 + q2)

with a uniform projection, p(qe) = constant.
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2071

P max

Fig. Al. The maximum value of p(T) from Eq. A2 is shown

as a function of .

-~ b

XBLE89S-3915

Fig. A2. The function gT(t) specified by Eq. (A8) is

shown as a function of +t.
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Proof of Theorem: f 1is normalized by

: 1
' 3 .
ff(p2 I+ qe)dﬁpcﬁq = ﬁ— f f(t)t2 at = 1 .

(A3)
The mean of any fung;tion g(t) is }
| ‘ 1
. J—(B 5 .
mean g = 1= f g(t) £(t) t2 at (k)
. 0 ;
and the resulting number can neither exceed the largest nor fall
beneath the smallest value of g(t) (0t < 1):
inf g< mean g < swp g . | (a5)
. The project-io'n of f is
. , .
, 1
o(@®) = ]f(l@2 +q)&p = 2 j £(t + q°)2 at
or 1 |
i ' _
o{T) = ox f £(t) (¢ - T1)2 at . (A7)
v T ‘
Consider the function o
g (%) =£—t—227—) for 0K TLtKL
. t i '

= 0 for t<r s . (A8)
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which is shown in Fig. A2. Its mean value is proportional to p(T),

2
%— p(T) = mean g. < sup g, - (A9)
N L 1 2
‘ 2
But for 5— T<1, sup gT = max g_r = gT(gl) = 17 (% ) , and

L ,
for .3. T>1, sup gT = gT(l) = 1 -7 . Q.E.D.
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B. The Amplitude-Phase Equations for Two-Dimensional Beams

In the absénée of space charge and gradient errors, the solu-
~tions of the two-dimensional envelope Egs. (3-1) and (3-2) can be

written in the form.

| - . 1+4% 4+ A sin (2§X¢ + )

>

VX,A COS_(vaQf + Q) 5

M
|lF

2 2 R
1+B +B 51n(2vZ¢ + B)

N
Il

b

&
Z v, B cos(2v2¢ +8) (B1)

€l

where A, B, a, and B are constant. When Eqs. (Bl) are inserted into
the complete envelope equations with space charge and gradient errors,
we obtain‘the following first-order equations for A, B, Q s QZ:

cos Q. (B2)

2
%%‘ =‘%J-1;—"\/‘_1+A2 I
_r__’

-r—"-l
V cos q, , (B3)

2 o '
de w o

. L -_L 2 . .

A EE— = . MX + Aysx 1 +A sin Qx + EAAVX . (BY)
dq [0 .

L9y SR 2 .

B 7 - o M, +Av, V1 + B singQ +2BAv, , (B5)
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plus additional terms that vary with the frequencies EVX, EVZ, hvx,

hvz, etc. We have defined Q_ = (va -n)g + a, Q, = (EVZ - n)f + B,

vy =V - %, Amz =v, - %, and
. 21{ .
Iy = %r' f lezgcsszi dw  with uw=nf+Q
© | (86)
Y A
MX _ g} -[' A + x(ixf+AbZ)51n Y gu , (B7)
0

with similar definitions for IZ and MZ. The quantities IX and IZ

are related by

@AT +BBI. = O . (B8)
x z ,

A. Equal Frequencies and Emittances

In general, Eqs. (B2) - (B5) are very difficult to solve;
‘however, for the special case of equal frequencies (vX = vz) and equal

emittances (a = b), analytic solutions exist with the forms

X = 1+A° +4 cos(ng + Q) ,
2 2
z= = 1+A +A cos(ng + Q) , (B9)
where the plus sign occurs for a symmetric gradient error (Aysx =’AVSZ)
and the minus sign for an antisymmetric gradient error (AWSX = ﬂﬁvsz);

For either gradient error, IX = IZ =0 and Milz MZ, so that

Eqs. (B2) - (B5) reduce to
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%% - w V1 + 4% gingq , (BL0) |
i
aq A/ 2
A ¥ - - LI-AVSC M, +av Y1 +A" cosQ+28Av |, (B11)
~ where f
Vi+a® -1 :
M, = 55 s for + in B9 (B12a)
and
' C1 2 x° |
M = =|1-=-=K(k) , for - in B9 (B12b)
- 2k T A2

and K(k) is the complete elliptic integral of the first kind with
modulus k = A

1+ A2

The phase trajectories in A, Q -space are found by dividing

(B10) by (Bll) and integrating the result:

Av M
constant = A cos Q + %%2 1+ A2 - L ANSC ‘[ Tt a
° S 1+ A2

where

M dA V
[A +  = %—m(1+‘\)l+A2) o (B14)

and
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o | | R
,[ 2 =_:25[MA_.§II?]§_klak] . (B15)

1 Av ; 5 Awsc
Q = 0, A=__2-E/— 1+A +2 M,
or (B16)
Ay Av )
1 ~'s 2 sc
Q = T, A_E-AT ‘l+A +2A Mi B

and are shown in Fig. 10. For Avs = 0, these equations specify the
amplitude of the free envelope oscillations that are periodic.

Because of the nénlinearity in the envelope equations, a
gradient error of one symmetry also affects the normal mode solufions
of opposite symmetry. Thus the symmetric fixed points of (Bl6) are
modified by an antisymmetric gradient error, and vice versa. For |
example, in the absence of all gradient errors, the‘symmetric envelope

oscillation has the form

x = z° = 1+4% + A cos ng (B17)

where

An antisymmetric gradient error transforms these fixed points'into



I

|
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x° = 1+ A2 + A cos(n¢ +Q) ,
2 )
z- = Y1 +A" -Acos(nf -q) , (B18)
_ r Lvg '
© where for ——= << 1, Eqs. (B2) - (B5) become
: ANS
A cos ¢ = A_'V- 3
4 2 Av .
A - sc . (319)
\/“_-“-E?. Av
1+ A -1
v ' Aws _
For small values of ~ they approach very closely the form (Bl7), as

shown in Fig. 11. The symmetric gradient error modifies the antisym-
metric fixed points in an analogous manner.

B. General Beam Configurations

The response curves for Ve % vV, and a 4 b can be obtained

from Eqs. (B2) - (B5) by numerical methods. However, for simplicity,

we consider only the Amsx = 0, A”sz = 0 asymptotes, in other words,

the free envelope oscillations that are periodic. Equations (B2) and

(B3) then require that IX = IZ O, and this condition is satisfied

if Qx - QZ = O,x, so that

X2 = l + A2

+

A sin(ng +Q) ,
‘( B20)

S
o
N
l_.l
+
t
OV
o8

B sin(n¢ + Q) .
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The quantities A and B are then determined by (B:) and (B5):

2 25 . g
A = wE» b__j’ A+Vl+A2 sin u

v Av.  ox x(ax + bz) du

¥ x

0
| (B21)
w2 .
B = 9 La l + B §in U g
T 2v_Av, 2n z(ax + bz)
Z 'z o

These integral equations were solved numerically, and the solutions are

shown in Fig. 1h.

LB L2 L
il el
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C. Normal Modes that Oscillate with the Fregquencies ny

The uniformly charged beam (Section 1, Part II) has normal-mode

solutions that oscillate with the frequencies ny, where n is an
integer and v = 902 - dbe . The electric field for these modes has
the form ‘E:m(x) = Pm_l(x), and the perturbed particle density is

determined by Eq. (1-6) to have the form
-in®
2, 0) = g (r, 0) + ey () (c1)

where fmn(r, ©) is given by Eq. (1-21) with @ =nv. The function
gﬁn(r) is determined by the condition that f(r, ©) produce the

required electric field, Pm_l(x):

dap :X‘
_m_;blc_(l = 2 [f(r, e) av . . o (c2)

If (Cl) is inserted into (c2), we obtain the following condition for

& (T):
ar (%) L cos 16 g (r)
(1 -Km(nv)]—-%—— = ] 0 m" " ar , (c3)
x| VB - P

where vcos.eo = %. For even values of n, the right-hand side of (C3)
. is an even function of X, and therefore m must be even; for odd values
of n, m must be odd.

There is an infinite number of solutions for n = O, i.e., an

infinite number of étationary distributions that differ from fo(r) by
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an infinitesmal perturbation. Using Abel's theorem " to invert (C3),

we find

|+
n

il

! w
£
&50(T) {1+ 2 f,(x)

B (151" ) £,(x)
15r~ - 11) £ (r
6l” 0 ’

|
=
+

-

gho(r)

2
CL)p L 2
1+ ——5 (bor” + 1br°® - 1) fo(r)
16-16v

1l
PN

g6o(r)

"

(ck)
Consequently, for m =2 and n = 0,
w 2 dfo 1 aiz
(r, o) = - ;g_ 5 T cos 20 + S11+ Z;E' f, ,(Q5)

and similarly for the higher values of m. Sincé these solutions all
have the same eigenvalue o = 0, any combination’will also be a
solution.

For n greatér than zero, ‘Km(nv) is infinite if m > n.
Therefore the functions gmn(r) spedified by (C3) exist only for m < n,
and these values correspoﬁd exactly to the blanks in Table III. For

example, for n =1 or n = 2 there are no solutions. For n = 3

there is one solution, with the form
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£ = f,(x, 0) 47138 g, 5(7)

{In this case the left-hand side of (C3) is zero, and it is more
convenient to determine ng(r) by the equivalent relation
1
1

- Km(nv)] ?m_l(x) = -= J/. rdr sin ne gmn(r) . (¢c6)

x|

Equation (C3) is the derivative of (C6) with respect to x.} For n = L
there is also one solution, whereas for n = 5,6 there are two solutions,

and so on for the higher values of n.



-11k4- UCRL-18k45)
D. Freguency Spread fbr Nonuniform Stationary Distributions

The Hamiltonian for the individual particles within a stationary
distribution f(p, q) i

1s

H

1, 2 22 2
e vy " 0@
where

(p1)
a0
d.q2

(=]

-2 [ £(H) ap

2
and where

J f(p, @) dp dq =1

(p2)

We have chosen the units of ¢

s0o
that the beam boundary is q = 1, and have defined «_ as the plasma
frequency for the average charge density.

The revolution frequency of the individual particles is deter-
mined by (D1) and (D2). For AG snychrotrons,

% << v 2 ana it
TR © '
suffices to find H +to first order in (;2) , namely H = HO + Hl,"
1,2 22 2
| = = (o) al :
where H, 2(p + v a ) and Hy @, ?O(g) with
d2®o ‘ .
5 = -2Jf(H)a = -204(a) . (D3)
dg
In terms of the action and angle variablés J;W’ given by

= §£ sin W'ﬂ
q = Vo P)

w

vo¢ + constant,

(Dk)
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the zero-order Hamiltohian is Ho = vOJ; the transformed first order
Hamiltonian Hl(J) _is just the average of Hl(p, q) over the

unperturbed orbi't,55

2

9 o 2J \
H (9) = e—i—‘/O— @O<'\/;g sin v) dw . (D5)

The frequency of revolution of the individual particles is then

o2 en
_ 2 d RV
v(J) = vo * 5 dJ‘[. @O(: Vo sin Wi) aw . (D6)
.0

If the differentiation is performed, followed by an integration by

parts, Eq. (D6) becomes

2n
v(r) = v, - Av 2 (r sin w) cos® w dw (p7)
. 0 sC « Po : ?
0
where r = %ﬁ is the radius of the unperturbed orbits and
0
2
5l
Avge = 2y,
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2 2
9—-)22+K(s)x-55-=o ,
ds X
is equivalent to the two "Cartesian" equations
2
d
_yg"'*'K(S)y:O:
ds
2
Q;% + K(s)z = 0 ,
ds
where X2 = y2 + 22 and E =y %S -z %% . Thus if vy falls

within a stopband, both y and =z and éonsequently' X grow
arbitrarily large while E remains constant.
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16.
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Av_, =

sc Av.

The equatidn of motion for the individual particle is

2

dx 2vAvV
D S =14 -
5o+ K(s)xp e 0

where 'xp is the x coordinate of a particle, and the envelope

has the form

2vav_ cos nf

~ 3
hve - byAv - n2
sc
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plus free oscillations. Combining the two equations, one obtains

.2 )
d'x 5
5 [v - QVAMSC + 2vhv  cos ng - 2vAv
aff
EHAVS cos nf ]
X x = 0
2 2 D ’
by™ - 6vAVSC n

where the nonresonant, free oscillations are neglected. For the

intensity Lv, = Av, this equation becomes

d2xp 0\
d¢7+(§> % =0
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exactly cancels the gradient perturbation for this intensity, and
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to that in the AGS is % = Vo - 1.0k Av,,. The resonant condition
for the corresponding uniform beam is % = vy " %'A”sc’ and the

1.04
0.75

that the same ratio applies to the two-dimensional resonant condi-

frequency shifts from vy are in the ratio = %. Assuming

tions (4-1) and (4-2), we conclude that the resonant conditions for

the corresponding Gaussian distribution are approximately

% = y_ - g-Av s
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Ny

. e\ 2
En‘\/Eg - (xx' - X'x)° - @%)

1

f(X) x', S). =

i
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For small amplitqdés; X ;.ﬁw/%f +‘6Xe-1a¢'>where ¢ has been

used in place of s. If the distribution is expanded to first

order in BX,,there'resulﬁs;
‘ N . o / oN -1
' o 1 .2 v {2 LDV V =1
f(x, V’ ¢) = 72—’;; {l - X - ——-2- + 26 (X - l-;}— x—; - v—2>e U.¢ }

o . . ~ JE dx
where now x 1is measured in units of 5 V= Eﬁ’ and

€ = 0 .. This expression is idéntical'with f=?f +f, N
\/E” = : : 4 0 22
v
where ‘
- ar - . .
_E_O0 (.o .o : \ =iaf
-f22 = - 3% r <1vv51n 29- 2 cos 25) e .
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‘N G. van Kampen, On the Theory ot Statlonary Waves in Plasmaa,

Phy51ca 21 9lLg (1Q35), also K. M. Case, Plasma 0501llatlons, Ann.

Phys. 7, 349 (193 )-

- For nonharmonﬂc external potentwals, there is a spread in zero

. 1nten5¢tj beLatron Prequen01es; tne orbits-for the individual

partlclesnln X - %-  spacé are not ¢ircular, and the~frequency
TR - Vg , e - >

of revolution w,(J) differs for each orbit. In terms of the
action and angle varisgbles J, w. defined for the individual
particle Hemiltonian, the zero-intensity eigenfunctions and

elgenvalus

[ 7]
m

re



20.

1.

32,

-122- UCRL-18454

. ~-inw . _‘ o
fll W = G g), e amg@)

wheie 8(x) is the usual deita fgnctioﬁ and p isa continuous
ﬁaramefer thatrvaries between zero and imai' The nbrmal‘modes are
n§W‘discontinuous‘functions in analogy with the Van Kampen modes
(Ref. 28) for én infinite homogeneoﬁs medium, and the éigenvalue
spectrum is continuous in sections near nvO(O)

P. A. Sturrock, Nonllnear ELIGCLS in Alternatlnc—uradiént Synchro-
trons, Ann. Phys. 3, 113 (1958).

Ehrman writes the eigenfrequencies in the form
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where his ab is the plasma freguency for the central chargé

density, which is & times the average chargé density. 1In. our

units,

2 : 8 n
z = )+ 55T v
. ~_A 'E

16 n 1
& = " <}O - 2 1 A‘,Vsc
: T noTy

\N

n

where his- @y is the plasms frecuency for the central charge

o
o

density, which is 2\ ==  4imes the average charge density. I
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our units,

‘ 1.67
w = ny, + — ) JANY; .

mn 0 n mn sc

The eigenfrequencies are not labeled according to Weibel's notation,
but according to the notation for the uniform beam. The values of

k55 and th are obtained from Fig. 2 of Weibel.
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H. C. Corben and Philip Stehle, Classical Mechanics, 2n

(John Wiley and Sons, Tnc., New York, 1950), ». 2L
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